
The “Web/Local” Boundary Is Fuzzy:
A Security Study of Chrome’s Process-based Sandboxing

Yaoqi Jia
National Univ. of Singapore

jiayaoqi@comp.nus.edu.sg

Zheng Leong Chua
National Univ. of Singapore

chuazl@comp.nus.edu.sg

Hong Hu
National Univ. of Singapore

huhong@comp.nus.edu.sg
Shuo Chen

Microsoft Research
shuochen@microsoft.com

Prateek Saxena
National Univ. of Singapore

prateeks@comp.nus.edu.sg

Zhenkai Liang
National Univ. of Singapore
liangzk@comp.nus.edu.sg

ABSTRACT
Process-based isolation, suggested by several research prototypes,
is a cornerstone of modern browser security architectures. Google
Chrome is the first commercial browser that adopts this architec-
ture. Unlike several research prototypes, Chrome’s process-based
design does not isolate different web origins, but primarily promises
to protect “the local system” from “the web”. However, as bil-
lions of users now use web-based cloud services (e.g., Dropbox
and Google Drive), which are integrated into the local system, the
premise that browsers can effectively isolate the web from the local
system has become questionable. In this paper, we argue that, if the
process-based isolation disregards the same-origin policy as one of
its goals, then its promise of maintaining the “web/local system
(local)” separation is doubtful. Specifically, we show that exist-
ing memory vulnerabilities in Chrome’s renderer can be used as a
stepping-stone to drop executables/scripts in the local file system,
install unwanted applications and misuse system sensors. These at-
tacks are purely data-oriented and do not alter any control flow or
import foreign code. Thus, such attacks bypass binary-level pro-
tection mechanisms, including ASLR and in-memory partitioning.
Finally, we discuss various full defenses and present a possible way
to mitigate the attacks presented.

1. INTRODUCTION
Web browsers were originally monolithic pieces of software with-

out a principled way for separating their objects and resources [42].
As a result, any successful binary-level exploit (e.g., through a
memory bug) would take over the entire browser. For many years,
this was an ordeal for browser security. To confine malicious web
sites, modern browser architectures adopt sandbox techniques to
strongly enforce the separation between the web domain and the lo-
cal domain. The sandbox prevents malicious web sites from affect-
ing local systems even when there are exploitable memory errors
in browsers. In addition, recent browser architectures have adopted
a process-isolated design. The goal is to further confine the dam-
age of a security exploit within the boundary of the compromised

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978414

process, so that objects and resources in other processes are unaf-
fected. After initial research prototypes [52], Google Chrome is the
first commercial browser to adopt this approach [43]. Internet Ex-
plorer (IE) has also adopted it since version 8.0. As of July 2015,
Google Chrome and IE (on desktop and mobile) are estimated to
have over 80% of the worldwide web browser usage [37]. In this
paper, we revisit the security offered by this de-facto architecture,
using Google Chrome as a representative.

The Google Chrome’s architecture uses privilege separation in
two ways. First, Chrome isolates the browser kernel process, which
has access to the user’s local OS interfaces, from the renderer pro-
cess, which is sandboxed and hosts the web page’s resources. Sec-
ond, Chrome isolates website instances [28] or tabs into separate
renderer processes. Chrome’s design highlights a clear deviation
from the conceptual proposals in Gazelle [72] and OP2 [53] — a
tradeoff between security and performance [50]. A particular dif-
ference is about enforcing the same-origin policy (SOP) [30]. The
same-origin policy prevents any accesses from a.com to b.com
in the browser, unless they communicate through certain explicit
cross-domain channels (e.g., PostMessage [36]). In both of the
aforementioned research prototypes, enforcing the same-origin pol-
icy is an explicit goal of the process isolation. They aim to place
objects from different web domains in different processes, so that
cross-domain accesses must take place as inter-process communi-
cation (IPC) calls [21]. However, when adopting this approach,
Chrome makes a compromise between the sandboxing granularity
and the affordable performance overhead: the goal of the sandbox-
ing is only to restrict the accesses between contents from the web
and those in the local file system, whereas SOP is not enforced by
the sandboxing if the contents from different domains are loaded
into one process. It is the rendering engine that is responsible for
enforcing SOP within a process.

However, there is a common misconception that Chrome’s sand-
boxing granularity is per domain. Actually, Google is upfront about
this in an early paper about Chrome’s security architecture, in which
“origin isolation” (essentially the SOP) is listed as one of the “out-
of-scope goals” [43]. Rather, the explicit goal of its process-based
sandboxing is to separate “the web” from the “local system”1.

The notion of web has evolved to include cloud services over
the past a few years, which are increasingly integrated with local
systems and devices. For example, storage services like Dropbox,
OneDrive, and Google Drive are pervasive. These kinds of ser-

1Though there are on-going efforts to improve site-based isolation
in the Chromium project, such as the roadmap outlined in [32] and
the out-of-process iframes [26], they are not practically available to
offer stronger protection.



vices integrate the cloud with the local file system, i.e., a local
folder is created to automatically synchronize with the storage in
the cloud. Similarly, source code repository services like GitHub
also represent new usage scenario of cloud services, in which the
user regularly pulls files into the local file system. Likewise, ap-
plication (app) stores, cloud VM management consoles and remote
host-management apps are common scenarios in which cloud ser-
vices install programs and manage privileges on the local system.
Therefore, the reality today is that the web (i.e., the cloud) is an
integral extension of the local system, not a foreign landscape that
can only be viewed through a browser. Considering this reality, we
re-examine the trade-offs made in browser design.
Threat to web/local isolation. In this paper, we present a study
to question the effectiveness of such a coarse-grained “web/local”
separation in practice. We argue that, if the process-based sandbox-
ing regards the same-origin policy as an “out-of-scope goal”, then
its promise of maintaining the “web/local” boundary is in doubt.

By compromising the renderer process of a website, an attacker
can access the contents of the site on behalf of the user. However, to
universally access the contents of arbitrary origins including sites
of cloud services, the attacker has to bypass the SOP enforcement.
Once SOP is compromised, the attacker can further bypass web/lo-
cal isolation for any files related to any cloud services the victim
user has already authenticated to. Essentially, with a coarse-grained
“web/local” isolation enforced by the process-based sandboxing,
the burden of the SOP enforcement entirely relies on the renderer
logic. We believe this is a dangerous choice, and to substantiate the
claim, we revisit Chrome’s design and actual implementation for
the SOP enforcement. Specifically, we find several weaknesses in
Chrome’s SOP design against a memory exploit in the renderer pro-
cess. We have explored several types of local-machine services that
can be subverted if SOP is compromised. For instance, we show at-
tacks which in several cases (a) create data files with unrestricted
file permissions, (b) remotely control virtual machines, (c) install
apps on local system, (d) read device sensors such as geolocation
and so on. Many of these are hard to achieve via the direct renderer-
kernel interface. For example, files downloaded through Chrome
are by default only readable, while the files imported via the Drop-
box local folder interface can be executable. After bypassing the
SOP enforcement in Chrome, a memory exploit can leverage the
web interfaces (websites) of cloud services to indirectly access the
local system.
Bypassing SOP enforcement in Google Chrome. In the presence
of intra-process protections including internal address space layout
randomization (ASLR) [2] and partitioning [27] in Chrome, as well
as data execution prevention (DEP) [41] and control-flow integrity
(CFI) [39] defenses, it is difficult to exploit memory bugs to change
control flows and further bypass SOP in Chrome. In contrast, we
employ data-oriented attacks to corrupt SOP-related critical data to
bypass the SOP enforcement. In Google Chrome, we observe that
the renderer process is responsible for performing SOP checks. For
instance, X-Frame-Options dictates whether a site b.com can be
iframed by a.com 2. Such a specification is at the discretion of
b.com, and its enforcement should ideally be done in the browser
kernel (or outside a.com’s renderer process). We find several in-
stances of such policy enforcement logic that are instead done in the
renderer. The consequence of sharing a renderer process between
distrusted origins is that all SOP checks must be done by a security
monitor within the same process. Protecting the security-sensitive
state of the SOP-enforcing monitor is a difficult task in the presence
of low-level memory corruption bugs. We show that memory cor-

2a.com loading b.com in an iframe.

ruption vulnerabilities can be used to corrupt the security-critical
data in the renderer process to bypass SOP. These attacks can tar-
get purely non-control data, and do not require any foreign code
injection or control flow hijacking. That is, they remain agnostic to
deployment of DEP and CFI defenses.

Chrome employs several best practices to minimize exploits via
memory errors. Chrome separates its heap memory into different
partitions, and deploys ASLR on these partitions with its internal
random address generator independent of that in the underlying OS.
We show that although such defenses are clearly useful, they are
insufficient to block SOP bypasses. This is because resource ob-
jects of one origin can be manipulated to create pointers to objects
of other origins. Since they share the same address space, such
references can be used to cross origin-based partitions and bypass
memory randomization of partitions.
Concrete attacks and light-weight mitigation. We have verified
our attack by exploiting the renderer in Chrome 33 using a mem-
ory vulnerability [8]. Further, we have taken a best-effort approach
to identify SOP-related critical data, and successfully found over
10 SOP checks and their corresponding critical data. We have dis-
closed the details of our attacks to Google Chrome team, and they
have acknowledged our findings. They also admit that a massive
refactoring of Chrome is required to isolate origins into different
processes, which prevents our attacks. We discuss the defenses
both on cloud services, and on web browsers. As the first step to
protecting the same-origin policy in Chrome against data-oriented
attacks, we have implemented a light-weight prototype based on
address and data space randomization of security-critical data for
SOP. Our evaluation shows that our mitigation introduces negligi-
ble overhead.
Contributions: In conclusion, we make following contributions:

• Threat to Web/Local Isolation. We highlight the importance
of SOP enforcement in maintaining the “web/local” separation
in light of emerging web-based cloud services. Once SOP is
bypassed, cloud services can be abused by a renderer attacker
via the web interface to access the local system.

• Security Analysis of Chrome. We take a closer look at Chrome’s
design and implementation for the SOP enforcement. We find
that there are several important differences between Chrome’s
deployment and the ideal design, e.g., misplaced security checks
and unprotected security-critical states.

• Concrete Data-oriented Attacks for Chrome. We show how to
construct reliable data-oriented attacks that target the security-
critical states in the renderer address space to bypass the SOP
enforcement. Our attack demos are available online [33].

• Light-Weight Mitigation against Data-oriented Attacks. As a
first step, we propose the use of address randomization and data
pointer integrity as a light-weight mitigation to protect security-
critical data of SOP checks.

2. BACKGROUND & THREAT MODEL
In this section, we give a brief overview of Chrome’s security

mechanisms, namely, web/local isolation and SOP enforcement in
Chrome, as well as our threat model.

2.1 Process-Based Sandboxing in Chrome
Chrome’s multi-process architecture. For a complex system like
a web browser, bugs are almost inevitable. A good approach to
enhance reliability and security is to isolate bugs in different pro-
cesses. Specifically, in Chrome, there are two types of processes:



Reference	  poin+ng	  
to	  B’s	  object	  

JavaScript Engine  

A’s	  script	  accesses	  
B’s	  object	  

SOP  
checks Cri+cal	  

	  State	  

Disallow 

Security Monitor 

B’s	  object	  
A’s	  

context	  	  
A’s	  

context	  	   B’s	  URL	  

B’s Context 

Figure 1: Overview of the SOP enforcement in Chrome’s renderer.

there is one process to act as the browser kernel module that handles
the interaction with the local system, while the other constitute the
renderer module representing the web [24]. They are referred to as
the browser kernel process and the renderer processes, respectively.

The browser kernel process is in charge of issuing network re-
quests, accessing persistent storage such as cookies and history,
and displaying bitmaps on the user’s screen. A renderer process is
responsible for parsing web documents including HTML and CSS,
interpreting JavaScript, and rendering the web content into bitmaps
[43]. The browser kernel process is trusted by the operating sys-
tem, whereas the renderer is assumed to be untrusted because it in-
cludes untrusted resources from the web. To enforce the web/local
isolation, each renderer process is restricted within a sandbox (de-
scribed below), As such, it can only access limited local resources
such as network and files from the browser kernel process through
IPC calls, but cannot directly read/write the user’s file system.
Sandbox mechanisms for web/local isolation. Chrome’s sand-
box [31] leverages the security assurance provided by the operating
system. The specific assurances depend on the operating system.
For example in Linux, Chrome has two layers of sandbox, i.e., Se-
tuid and user namespaces for layer-1 sandbox as well as Seccomp-
BPF [62] for layer-2 sandbox [23]. The layer-1 sandbox creates
different network and PID namespaces for renderer processes. The
layer-2 sandbox is designed to protect the browser kernel from ma-
licious code executing in the user space. Consequently, renderers
can only run with a limited set of privileges and access resources
from the browser kernel process through IPC calls.

2.2 SOP Enforcement in Chrome
An origin is defined as the combination of protocol (or scheme),

host and port. In Chrome, enforcement of the same-origin policy
is the responsibility of the renderer process. This prevents scripts
from accessing content between sites unless they share the same
origin.

Figure 1 demonstrates the design of the SOP enforcement in
Chrome’s renderer. Consider the two scripts, hosted at a.com
(or A) and b.com (or B) respectively. When A’s script accesses
objects in B’s origin, a security monitor will check if the access
is permitted by the rules of SOP. For instance, if A’s script refer-
ences the contentDocument field of B’s window object using
JavaScript, the security monitor will check whether obtaining such
a reference is allowed under SOP. Once the reference is obtained
by A’s script, all objects transitively reachable via that reference are
implicitly allowed, as JavaScript follows an object capability model
for security checks [44, 60]. Therefore, the key to protecting B’s
object resources from cross-origin attacks is to interpose on all ref-
erences to root objects such as contentWindow which contain
references to B’s other objects. Chrome inlines calls to the security
monitor in the renderer to perform these checks comprehensively.
Intra-process protections. In-memory partitioning is used to sep-
arate logically unrelated pieces of data into different compartments.
For instance, Chrome deploys its in-memory partitioning mecha-
nism (called PartitionAlloc [27]) to separate the heap memory in

 0

 2

 4

 6

 8

 10

 12

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Chromium Version

Stack Buffer Overflow
Heap Buffer Overflow
Heap User After Free

Figure 2: The memory vulnerabilities in the renderer module.

each renderer into different partitions. With its own internal ran-
dom address generator [2], Chrome randomizes the starting loca-
tion of each partition and places unreadable/unwritable guard pages
between partitions. These protections make memory bugs in the
renderer difficult to exploit. However, we will show that our attack
can successfully bypass all these protections in Section 4. Further,
our attack can corrupt the critical state of the security monitor, and
bypass the SOP enforcement in Chrome.

2.3 Threat Model
We assume a memory vulnerability in the renderer which can

be exploited when the browser visits a website owned by the web
attacker. The web attacker can entice the victim into visiting her
website via spam emails, advertisements, search engine optimiza-
tion (SEO) and other techniques. We also make a realistic assump-
tion that some popular web-based cloud services (e.g., Dropbox,
Google Drive and GitHub) are integrated into the user’s local sys-
tem. These services claim that over a billion users use them [14,
18]. We assume that the user has active web sessions (e.g., cookies
have not expired) of these sites or the vulnerable browser remem-
bers the credentials for them. The goal of our attack is to demon-
strate that the intra-process protections are insufficient to prevent a
memory vulnerability exploit from bypassing the SOP enforcement
in the renderer. This enables the exploit to subvert the promise of
the process-based sandboxing, which attempts to protect the local
system from malicious sites.

Our attack requires a memory vulnerability that 1) it is located
in the renderer process; 2) it can be used to read/write data within a
certain non-negligible range. We analyzed 599 security vulnerabil-
ities for Chrome listed in Chrome Issue Tracker [5] and CVE [17],
from version 31 (Feb 2014) to 48 (Feb 2016). Based on the labels
and descriptions for these vulnerabilities, we identified 104 mem-
ory vulnerabilities in the renderer module. They belong to three
categories: use-after-free, heap buffer overflow and stack buffer
overflow as summarized in Figure 2. The average number of vul-
nerabilities in the renderer module per major version is about 6.

We make no assumption on the configuration of the HTTP servers
used by the web services. The servers can set any HTTP headers,
e.g., X-Frame-Options and cross-origin resource sharing, on their
websites. We will show in Section 5 how our attack bypasses SOP
checks that enforce these policies.

3. WEB/LOCAL INTEGRATION
The development of cloud services has been blurring the bound-

ary between web and local. For example, services like Dropbox
and OneDrive synchronize a cloud drive with several local devices.
Additionally, web services are also used to remotely control tradi-
tional desktop based OS (such as Amazon EC2) or mobile devices



Channel Example Apps # of Users Impact
1 Cloud Storage Google Drive, Dropbox and OneDrive 400 M+ Leak private data and place malware on the user’s local system
2 Code Hosting/Editing GitHub, GitLab and Bitbucket 10 M+ Inject malicious code into the user’s code repository
3 Email Clients Thunderbird and Outlook 500 M+ Place malware into the user’s email repository
4 Remote Control Service TeamViewer, NoVNC and Device Manager 200 M+ Remotely control the user’s device
5 App Store Google Play 1000 M+ Install malware on the user’s mobile system stealthily
6 Cloud Computing Service OpenStack and Amazon EC2 1 M+ Control the user’s VMs on the cloud
7 Video/Audio Recording vLine, Talky and Skype 300 M+ Record the video/audio from the device’s camera and microphone
8 Location Tracking RunKeeper and Android Device Manager 10 M+ Track the user’s location and places
9 Wearable Device Google Fit 5 M+ Track the user’s health information

Table 1: The web-based cloud services and their impact on local systems.

Figure 3: The binary file down-
loaded by Chrome is only read-
able.

Figure 4: The same binary file
synchronized by the Dropbox
client is executable.

(such as Google Play). As a result, the web has become an integral
extension of the local systems.

To understand the impact of such web-based cloud services, we
have investigated over 1000 popular websites, and categorized the
cloud service related sites into 9 channels as shown in Table 1. By
exploiting the first three channels, the attacker can indirectly read-
/write files on the user’s local system. The latter three channels can
potentially enable the attacker to interact with the local system to
install applications or execute code. Using the last three channels,
the attacker can leverage the system sensors, e.g., GPS sensor, heart
rate monitor, camera and microphone, to collect the user and sys-
tem’s sensitive information. Next, we analyze these channels and
the potential damages caused by abusing such channels.

3.1 Accessing Files on the Local System
Cloud Storage Service. Cloud storage services, like Google Drive,
Dropbox and OneDrive, are widely adopted by users. For instance,
Google Drive has over 240 million users [18], and Dropbox serves
more than 400 million users [14]. The most common usage is to in-
tegrate such a service into the local file system so that it appears as
a local folder. Users usually save documents, multimedia files and
even executables in the folder. The files are automatically synchro-
nized with the storage server. In order to improve usability, nearly
all storage services provide a web interface for users to manage
their files.

Consider Google Drive3 as an example. If attackers can run
JavaScript in Google’s origin, they can load the site in an iframe,
use JavaScript to operate the DOM elements and trigger actions
on the site. On behalf of a user, the attacker can steal any private
file by sharing it with herself, create a new file or copy a malware
into the folder by accepting the attacker’s shared file ( as shown
in our demo [9]). The attacker can also delete a file permanently,
directly update the file or modify it using the shareable link. The
Google Drive client will then synchronize all the files after these
operations on the Google Drive server. These synchronized files
typically keep the original permission, which is hard to achieve

3The site of Google Drive is https://drive.google.com.

via the direct renderer-kernel interface. For example, the normally
downloaded files in Chrome by default are only readable as shown
in Figure 3; whereas, the files imported via the Dropbox client can
have executable permission as shown in Figure 4.
Code Hosting. Web-based code hosting sites, like GitHub, GitLab
and Bitbucket, offer distributed version control and source code
management. Millions of developers use these services to host their
various code repositories and projects [15]. These services support
command-line tools for users to operate their repositories, and also
allow users to commit updates on their websites. Once the attacker
hijacks any of these sites in the user’s browser, they can embed bugs
or backdoors in the user’s private project repositories by injecting
malicious code into the files.

3.2 Interacting with the Local System
Remote Control Service. Remote control services allow users
to remotely operate their computers. A popular example is Vir-
tual Network Computing (VNC). VNC uses a simple frame buffer-
based protocol with input events called the Remote Frame Buffer
(RFB) protocol to communicate between the server and clients.
Clients such as NoVNC and TeamViewer allow users to remotely
control their computers using a web client, providing the conve-
nience of accessing their remote device using nothing but a browser.
Once authenticated, the user has an active session to the remote
computer, which allows for any arbitrary action through interaction
with the server using RFB. For example, NoVNC implements the
RFB protocol as a JavaScript library that the web client interacts
with. Hence, an attacker is able to control the remote host by ac-
cessing the RFB object of the web client from another origin using
the memory vulnerability as described in Section 4.

Cloud computing services, like OpenStack and Amazon EC2,
often provide control panels for users to remotely perform opera-
tions on virtual machines. OpenStack even supports remote shells
(VNC) in the website for users to execute commands. As a re-
sult, an attacker can utilize a compromised renderer to run arbi-
trary commands/software on the user’s remote VMs as shown in
our demo [12].

Meanwhile, several mobile apps provide the service on their web-
site to perform actions on the user’s mobile device. For example,
Android Device Manager’s site allows the user to locate, ring, lock
and even erase her phone. Thus, the compromised renderer can
utilize these sites to remotely control the user’s device.
App Store. To be convenient for mobile phone users, app stores
(e.g., Google Play) usually provide installation synchronization acr-
oss multiple devices. In Google Play, after selecting the targeted
app, the user can choose one of her Android devices to install the
app. Once the “Install” button is clicked, the Google Play’s app on
the user’s chosen device will install the app without the user’s ex-
plicit consent, e.g., popping up the permission prompt. This feature
exposes to the renderer attacker a channel to stealthily install apps



(e.g., the attacker’s malware) on the user’s mobile device as shown
in our demo [11]. If it is an Android version of the vulnerable
Chrome, the compromised renderer can also craft malicious URLs
and leverage Android URI intents [3, 54] to launch the installed
apps to access the local system4.

3.3 Misusing System Sensors
Apart from directly affecting the local system, bypassing SOP

can be utilized to misuse system sensors. Web-based cloud ser-
vices can collect the user or system’s information (e.g., geoloca-
tion) from system sensors. Websites like vLine, Talky and Skype,
use new HTML5 features to record media with the user’s consent
within the browser. Chrome remembers the user’s decision for the
prompt, especially the “allow” option. Thus the attacker’s site can
embed these sites into iframes/tabs, run JavaScript (e.g., getUser-
Media) to record video/audio on behalf of the site with the media
permission. This enables an indirect route to access system sensors.
In addition, numerous mobile applications and wearable devices,
e.g., Apple/Android watch and wristbands, can assist the user to
keep track of her geolocation and health status. These apps record
and synchronize the user’s information from the user’s device to
their servers. By accessing the sites for these cloud services, the
renderer attacker can obtain the user’s sensitive information, e.g.,
geolocation and heart rate.

3.4 Threats to Web/Local Isolation
The web/local isolation enforced by process-based sandboxing

in Chrome makes memory exploits in the renderer significantly
more difficult to access local resources. However, through lever-
aging the web-based cloud service, a memory corruption exploit in
the renderer can indirectly access the local system, which makes
“web/local” isolation questionable.

The logic and critical data for the SOP enforcement in Chrome
are placed in the renderer, thus a renderer exploit can affect the ex-
ecution of SOP (details in Section 4). Once an attacker bypasses
the SOP enforcement with a memory vulnerability in the renderer,
the attacker’s site like a.com can run scripts to load a cloud ser-
vice’s site such as b.com into an iframe or tab and perform ac-
tions (e.g., trigger buttons) to create/edit/delete files in the site. Al-
though the renderer of a.com is sandboxed and cannot directly
access the local system, the cloud service’s client can synchronize
the changes made by a.com on the local system and import the
malicious files/contents added by a.com.

4. BYPASSING SOP ENFORCEMENT
To leverage the various cloud services to access the local system,

a renderer attacker first needs to use a memory exploit to bypass the
SOP enforcement. In Google Chrome, the consequence of sharing
a renderer process across multiple origins is that many SOP checks
must be done by a security monitor within the same process. How-
ever, this is difficult in the presence of memory corruption bugs.
In this section, we show how SOP enforcement can be bypassed in
Chrome using a memory bug in the renderer. In-memory defenses
— including internal ASLR and partitions — can also be bypassed
and simple extensions of these defenses are insufficient. We present
concrete attack techniques that work on Chrome in our demos [33].
The details of a complete attack on bypassing intra-process protec-
tions can be found in Appendix A.

4In the newer Android version, Chrome does not launch an external
app for a given intent URI, when the intent URI is directed from a
typed-in URL or initiated without user gesture [3, 29].

4.1 A Data-Oriented Approach
Chrome employs security monitors in the renderer to enforce

SOP as discussed in Section 2.2. The design of the SOP enforce-
ment in the renderer suggests that the security monitor’s internal
state is critical. By using a memory corruption vulnerability to cor-
rupt such critical monitor states, the JavaScript engine can be con-
fused to allow A’s script in accessing B’s objects. Note that such
corruption involves only data values, and does not require any in-
jection of foreign code or even code reuse attacks. The outcome,
though, is that A can run arbitrary computation (e.g., a JavaScript
function) in B’s security authority, as the JavaScript engine is a
Turing-complete language interpreter. Such attacks are agnostic to
the deployment of control-flow defenses such as CFI. The security
monitor’s critical data has to be readable/writable, and requires no
execute permissions — therefore, DEP is not an effective defense
against such data-oriented attacks. The remaining challenges in
constructing such attacks is to identify the security critical moni-
tor state and bypass any additional in-memory defenses that may
hinder corruption.

In Chrome’s implementation, we find that the security monitor
logic is implemented as a set of function calls5 in the renderer
module. These functions use a large set of in-memory flags and
data-fields to memorize the results of SOP security checks. These
security-sensitive data fields dictate the implementation of SOP
rules for various kinds of resources (e.g., JavaScript objects, cook-
ies, and so on). Checks on the data fields can be either invoked
from the context of A or B. We have confirmed over 10 different
SOP-related checks that could be targeted for corruption, listed in
Table 2 in Section 5, which allow bypassing SOP in different ways.
Further, there are certain decision-making flags which allow “uni-
versal” access, i.e., if such flags are set, no cross-origin checks will
be performed. For instance, we find the m_universalAccess
flag which if set, unconditionally returns true in the SOP access
control check (see Listing 1).

bool SecurityOrigin::canAccess(const SecurityOrigin*
other) const

{
if (m_universalAccess)

return true;
if (this == other)

return true;
if (isUnique() || other->isUnique())

return false;
......
return canAccess;

}

Listing 1: SecurityOrigin::canAccess in Chrome’s
renderer process.

In summary, the in-memory security monitor performing SOP
checks for arbitrary scripts is susceptible to data-oriented attacks [47,
55, 56]. These attacks do not store/run shellcode on the data area
(heap or stack) and require no control-flow hijacking. Thus, even
fine-grained implementations of CFI [39, 78, 79, 48] and DEP are
insufficient defenses. Next, we discuss additional defenses that
Chrome employs — memory separation/partitioning and ASLR —
and discuss why such defenses do not suffice as well.

5These functions include isOriginAccessibleFrom-
DOMWindow, canAccessFrame, SecurityOrigin::-
canAccess, and so on.



4.2 Bypassing ASLR
With a memory corruption bug, attackers can usually achieve the

privilege to read/write data within an address range. Chrome cre-
ates logic compartments (e.g., partitions) in the memory and utilize
address space layout randomization (ASLR) to randomize the base
addresses of partitions as discussed in Section 2.1. This makes the
location of the vulnerable buffer and the SOP-related critical data
unpredictable. Note that Chrome employs an internal ASLR within
the renderer process, which randomizes the address even if ASLR
in the underlying OS is disabled. Here, we describe an approach
to bypass ASLR in a fairly generic way, and this is effective even
when fine-grained data randomization is applied to randomize the
offsets between objects within one partition.

The basic idea is that the attacker’s script crafts an object with a
predictable layout pattern — this is called a “fingerprinting” object.
The location of the fingerprinting object is randomized by ASLR.
However, the attacker’s script can use a memory error to linearly
scan the memory searching for the location of the object. When the
object is identified, its location reveals the randomized address. If
the fingerprinting object contains pointers to other objects, like a
targeted object of the attacker’s choice, these pointers can in turn
be used to de-randomize the location of the aforementioned object.

For concreteness, we take the memory bug CVE-2014-1705 [8]
as an example. This bug allows an attacker to modify the length of
a JavaScript array and thus enables memory access past the array
bound. Let us observe how this bug can be used to de-randomize
the runtime address of the vulnerable buffer with fingerprinting
technique. The attacker’s script, running in the randomized pro-
cess, first creates a fingerprinting object — for instance, an object
that points to the string constant “aaa...a” k times. This can be
done easily by creating k DOM nodes, like <div> elements, with
a string attribute referencing the “aaaa...aa” string. Next, with the
buffer overrun, the code linearly scans the memory after the buffer
to find a four-byte value that repeats the most number of times (that
of the k string pointers) as shown in Figure 5. The repeated value
is the address of the string “aaaa...aa”, which can be read program-
matically by the script. Thus, we can use this memory fingerprint-
ing to reliably recover the address of objects.

class PLATFORM_EXPORT SecurityOrigin : public
RefCounted<SecurityOrigin>

{ ......
String m_protocol;
String m_host;
String m_domain;
String m_suboriginName;
unsigned short m_port;
bool m_isUnique;
bool m_universalAccess;
bool m_domainWasSetInDOM;
bool m_canLoadLocalResources;
bool m_blockLocalAccessFromLocalOrigin;
bool m_needsDatabaseIdentifierQuirkForFiles;

};

Listing 2: The definition of the class SecurityOrigin.

The fingerprinting technique can be used to fingerprint objects
with unique, predictable layout patterns. For instance, several secur-
ity-critical data are stored in an object of the SecurityOrigin
class in Chrome, which has a fixed, unique layout pattern as shown
in Listing 2. We use the same fingerprinting technique in a linear
scan to identify the security-critical object in our attacks.

This fingerprinting technique is different from memory disclo-
sure attacks commonly used to bypass ASLR, where the address
is leaked to an external network. Similar to attacks such as JIT-

Page 

Object	  Pointer	  

Vulnerable	  Array	  

Fingerprin6ng	  Object	  
offset 

Scan	  +	  Count	  

Object	  Pointer	  

Figure 5: Obtaining the ran-
domized address of an object
with fingerprinting.

a.com’s	  
pointer	  

b.com’s	  object	  

b.com’s	  
pointer	  

Partition A Partition B Partitions 

pointer	  guard	  page	  

guard	  page	  

guard	  page	  

Figure 6: Overview of origin-
based partitioning implemented
in Chrome.

ROP [67], our attack uses the fact that the adversary is running a
powerful script which allows the reuse of in-place, de-randomized
addresses as an input to the next-stage of the exploit. We wish to
point out that this fingerprinting is fairly robust even against finer-
grained data-space randomization, which may randomize offsets
between objects in memory. This is because the technique relies
on the fingerprint of the object layout, and doesn’t make any strong
assumptions about fixed relative offsets between objects in mem-
ory. However, extremely fine-grained randomization, which ran-
domizes the internal layout of an object may defeat such a tech-
nique. Finally, we point out that the technique has been used in
data-structure identification for kernels [49], and in some control-
flow hijacking attacks in the wild [76, 16]; our goal is to utilize
them to construct data-oriented exploits.

4.3 Bypassing Partitioning
Browsers (e.g., Chrome and IE) also employ in-memory parti-

tion to separate the heap memory into different partitions. The con-
cept of an in-memory partition is fairly generic, and can be used
to separate logically unrelated pieces of data in separate compart-
ments. For instance, Chrome uses partitions to separate different
types of objects in four different partitions. One can also use parti-
tions to separate the object heaps of two distinct origins, or separate
objects within an origin across multiple partitions. Typically, two
protections are used to separate partitions: (a) each partition is sur-
rounded by inaccessible guard pages (cannot be read/written), and
(b) each partition’s location is randomized. Guard pages provide
protection against sequential memory corruption (e.g., buffer over-
runs), since overflowing reads or writes will access guard pages and
cause an exception. Partition randomization protects against spa-
tial memory errors (such as buffer overflow) and temporal memory
errors (such as use-after-free). Our fingerprinting technique in Sec-
tion 4.2 is restricted to work only within one partition, since guard
pages are likely to disallow reads crossing outside a partition.

Nevertheless, partitioning itself is insufficient in preventing ac-
tual memory corruption attacks. The key to achieving such at-
tacks is cross-partition references or pointers that link objects in
one partition to another. In an environment like a web browser, ob-
ject references are pervasive and often under the control of scripts.
Therefore, the attacker’s scripts can dereference pointer values to
perform memory reads or writes across partition boundaries — a
sort of bridge to cross partitions. For instance, Chrome isolates all
buffer objects allocated in a buffer partition from other objects,
which are not linearly accessed in a general partition. How-
ever, the buffer partition contains references pointing to data in the
general partition. In our attack, we fingerprint a cross-partition
reference by creating a specific number k of these references point-
ing to a crafted object. These references, once obtained by the
fingerprinting method, can be dereferenced to reach the general
partition that stores security-critical objects.



Insufficiency of Origin-based Partitioning. It might be tempt-
ing to suggest a different partitioning strategy, say one origin per
partition. We will explain why such a strategy is insufficient. To
support primary communication channels among different origins,
e.g., PostMessage, browsers need to provide a handler of the tar-
geted origin B for the requesting origin A. Thus the origin A should
have an object containing a reference created by the browser and
pointing to an object within the origin B. As Figure 6 depicts,
a.com’s objects are in Partition A and b.com’s objects are iso-
lated in Partition B. An attacker can exploit a memory corruption
bug in Partition A to find the address of the object in Partition B by
reading its pointer located in A. In this way, the attacker can further
read/write the data in Partition B. Therefore, the origin-based parti-
tioning does not prevent a memory exploit from crossing partitions
and fingerprinting an object reliably.

5. ATTACK IMPLEMENTATIONS
We have investigated and implemented our attack on Chromium

version 33. In this section, we will detail the end-to-end implemen-
tations to bypass the SOP enforcement in Chrome.

We take Google Drive as an example to show a concrete attack.
When a user visits the attacker’s website in Chrome, the script run-
ning in the site exploits an unpatched memory vulnerability in the
renderer process. With the fingerprinting techniques, the script by-
passes Chrome’s ASLR and partitioning, finds the critical data for
the security monitor (e.g., the SecurityOrigin object) and cor-
rupts the critical flag such as m_universalAccess. Thus, the
script bypasses the corresponding SOP checks like Security-
Origin::canAccess. Then the script obtains the cross-origin
access capabilities to load Google Drive’s site into an iframe ig-
noring the X-Frame-Options, and further uses contentDocum-
ent to access the content in Google Drive. With these capabili-
ties, the script can trigger clicks to share private documents to the
public, create/edit or permanently delete files, and perform other
privileged actions on behalf of the user. After these actions, the
Google Drive’s server assists the client-side software installed on
the user’s local system to synchronize these operations, which may
introduce malicious files to the local system or integrate malicious
code into the current local files. With that, we have summarized the
capabilities an attacker can have into three categories6:

• Arbitrary cross-origin reads (1 - 4)

• Arbitrary cross-origin reads/writes (5 - 8)

• Getting/setting cross-origin persistent storage (9 - 11)

We have identified over 10 SOP checks and the corresponding crit-
ical data (as shown in Table 2). We have verified our attack by
exploiting the renderer in Chrome 33 using a memory vulnerability
found in the JavaScript engine V8 [8]. We provide the methodology
of identifying these critical data in Section 5.4.

5.1 Arbitrary Cross-origin Reads
In this section, we describe four different attacks using arbitrary

cross-origin read. The attacks are, reading arbitrary local files us-
ing FILE scheme, bypassing frame busting defenses to load cross-
origin sites into iframes, using XMLHttpRequest to read the con-
tents of cross-origin sites and reading the data of tainted canvas.
FILE Scheme. Since file paths are treated as part of origins, SOP
implies that the local file should not be able to access the content
6We demonstrate another category of bypassing discretionary con-
trols in Appendix B.

of other files, e.g., file:///Download/a.html cannot load
another file like file:///etc/passwd. Further, the browser
kernel ensures that a renderer process created for HTTP scheme is
unable to load resources under FILE scheme no matter what the
origin is. However, this check is not enforced for FILE scheme.
That is, scripts from FILE scheme are able to load resources from
HTTP scheme. Given this design decision, we will show how an
attacker is able to exfiltrate any local file to an attacker-controlled
server given a memory vulnerability in the renderer process [10].

The first step of the attack is to entice the user into opening a
downloaded malicious HTML file. As a result, the rendered HTML
file will have FILE scheme instead of HTTP scheme. The memory
vulnerability can be used to set the m_universalAccess flag
as described previously in order to bypass the security monitor de-
ployed in the renderer. This allows us to bypass the SOP check to
read the content of any local file. Finally, the content can be exfil-
trated by simply constructing a GET/POST request to an attacker
controlled remote server and appending the content as a parameter
to the request.
X-Frame-Options. This header prevents one site from being
iframed in a cross-origin site. If Chrome does not load the con-
tent of a cross-origin site into the renderer, the attacker cannot
read its content even with arbitrary memory reads. By modifying
m_protocol, m_host, and m_port in the SecurityOrigin
object to that of the targeted site, the attacker can bypass the SOP
check7 gaining the ability to load any sites without X-Frame-Options
or with X-Frame-Options set as “SAMEORIGIN” into iframes.
Currently, the majority of sites using X-Frame-Options set it as
“SAMEORIGIN” [58]. For the sites with “DENY” setting, we can
utilize window.open to load them instead.
Cross-origin Resource Sharing (CORS). This mechanism relaxes
the SOP restriction by allowing one origin’s resources to be re-
quested from another origin. The resource provider can set Acc-
ess-Control-Allow-Origin as the requesting site’s domain
or “*” (any domain) in the response header to explicitly instruct
Chrome to enable the requesting domain to access the resources via
XMLHttpRequest. Two of the functions are invoked by the CORS
check8. Setting m_universalAccess makes these two func-
tions return true. This causes the CORS check to always pass and
therefore, the attacker’s site can fetch the resources (e.g., HTML
and JavaScript) from arbitrary sites via XMLHttpRequest.
Tainted Canvas. The getImageData [4] interface is used to ob-
tain an ImageData object representing the underlying pixel data
for the specified rectangle on a canvas. Once a canvas is mixed (or
tainted) with a cross-origin resource (e.g., image), Chrome does not
allow scripts to obtain the data from the tainted canvas. The access
to the tainted canvas results in a call to SecurityOrigin::-
taintCanvas. Similar to that of the CORS check, the access
check invokes both canAccess and canRequest. By corrupt-
ing m_universalAccess, the attacker will be able to remotely
read data in the canvas.

5.2 Arbitrary Cross-origin Reads/Writes
Beyond the capability to arbitrary cross-origin reads, we can also

obtain the cross-origin arbitrary read/write capabilities. With these
capabilities, we can further use JavaScript to manipulate operations
on the DOM elements in the cross-origin sites in iframes or tab-
s/windows, e.g., trigger clicks to create/edit/delete private files in

7Implemented as a flag isSameSchemeHostPort.
8The two functions are SecurityOrigin::canRequest and
SecurityOrigin::canAccess.



Features/APIs Descriptions Example functions to perform checks (using
blink or content namespace)

Bypass with overwriting critical data

1 FILE scheme Blocking to read arbitrary local
files in the user’s system

canAccessFrame, SecurityOrigin::canRequest
and SecurityOrigin::canAccess

Set m_universalAccess as true; Set
m_protocol, m_host, m_port same with the
targeted site in the SecurityOrigin object

2 X-Frame-Options Preventing loading cross-origin
websites into iframes

FrameLoader:: shouldInterrupt-
LoadForXFrameOptions, par-
seXFrameOptionsHeader, SecurityOri-
gin::isSameSchemeHostPort

Set m_protocol, m_host, m_port same with
the targeted site in the SecurityOrigin object

3 CORS for XML-
HttpRequest

Blocking XMLHttpRequets to
retrieve the data from cross-
origin sites

XMLHttpRequest::createRequest, SecurityOri-
gin::canRequest and SecurityOrigin::canAccess

Set m_universalAccess as true; Set
m_protocol, m_host, m_port same with the
targeted site in the SecurityOrigin object

4 getImageData Blocking to access the tainted
canvas’s data

SecurityOrigin::taintsCanvas, SecurityOri-
gin::canRequest and SecurityOrigin::canAccess

Set m_universalAccess as true; Set
m_protocol, m_host, m_port same with the
targeted site in the SecurityOrigin object

5 contentDocument/
contentWindow
property

Blocking to access the content
(e.g., DOM elements) of cross-
origin websites in iframes

BindingSecurity::shouldAllowAccessTo-Frame,
canAccessFrame, SecurityOrigin::canAccess,
SecurityOrigin::isSameSchemeHostPort

Set m_universalAccess as true; Set
m_protocol, m_host, m_port same with the
targeted site in the SecurityOrigin object

6 window.frames
property

Blocking to access the content of
cross-origin sites within frames
in the frameset

isOriginAccessibleFromDOMWindow,
SecurityOrigin::canAccess, SecurityOri-
gin::isSameSchemeHostPort

Set m_universalAccess as true; Set
m_protocol, m_host, m_port same with the
targeted site in the SecurityOrigin object

7 window.parent /par-
ent, window.top/top

Blocking cross-origin sites in
iframes/frames to read/write the
content of the parent window

isOriginAccessibleFromDOMWindow,
SecurityOrigin::canAccess, SecurityOri-
gin::isSameSchemeHostPort

Set m_universalAccess as true; Set
m_protocol, m_host, m_port same with the
targeted site in in the SecurityOrigin object

8 window.open Blocking to access a new opened
tab/window of a cross-origin site

isOriginAccessibleFromDOMWindow,
SecurityOrigin::canAccess, SecurityOri-
gin::isSameSchemeHostPort

Set m_universalAccess as true; Set
m_protocol, m_host, m_port same with the
targeted site in the SecurityOrigin object

9 Cookies Blocking to get/set cookies of
cross-origin sites

WebCookieJar::cookies/WebCookieJar:: set-
Cookie and Document::cookie/Document::
setCookies

Set m_cookieURL as the targeted site’s URL in
the Document object

10 Localstorage Blocking to get/set localstorage
of cross-origin sites

DomStorageDispatcher:: OpenCachedArea,
and WebStorageNamespaceImpl:: createStor-
ageArea

Set m_protocol, m_host, m_port same with
the targeted site in the SecurityOrigin object

11 IndexedDB Blocking to get/set indexedDB
of cross-origin sites

IndexedDBDispatcher:: RequestIDBFactory-
Open, and WebIDBFactoryImpl:: open

Set m_protocol, m_host, m_port same with
the targeted site in the SecurityOrigin object

Table 2: The critical data for security-related policies in Chrome.

the cloud storage sites. Next, we present the instances to bypass the
security monitor for different interfaces such as contentDocum-
ent and window.open to achieve these capabilities.

The contentDocument/contentWindow interface is used
to access the DOM elements of an origin within an iframe. Sim-
ilarly, the window.frames DOM API is used to read/write the
content of frames in the frameset; and the window.parent/top
API can be utilized by frames/iframes to access the content of the
parent window. Based on SOP, Chrome disallows one site to access
the content of another cross-origin site in a frame/iframe via these
JavaScript APIs. The security monitor (e.g., canAccessFrame)
in the renderer is used to determine whether one origin can ac-
cess the origin in an iframe/frame or not. By corrupting the criti-
cal security monitor state — enabling m_universalAccess or
setting https for m_protocol, b.com for m_host and 0 for
m_port, we can obtain the capabilities for arbitrary reads/writes in
b.com. This results in the ability to manipulate the DOM ele-
ments and mimic actions on behalf of the user in any sites within
iframes/frames.

Since Chrome is designed as process-per-site-instance, a site ope-
ned by JavaScript (i.e., window.open) in a new tab/window still
belongs to the opener’s process. By default, the opener can only
access the content of the page in the new tab if they have the same
domain. However, if the renderer attacker modifies the decision-
making data for the security monitor such as isOriginAccess-
ibleFromDOMWindow, the checks can be bypassed to access the
content of an arbitrary site in the opened tab/window. With this
feature, the attacker can access the data of a cross-origin site with
X-Frame-Options as “DENY” in the opened tab.

5.3 Cross-origin Persistent Storage
Websites usually use cookies [19], localstorage [35] and indexed-

DB [20] to store persistent data to maintain the states for web ses-
sions. We find that these storage APIs strictly follow SOP, which
indicates that only the origin itself can access its data stored in the
storage. The browser kernel handles the implementation and up-
dates of these storages for various sites. However, in Chrome’s
current process model, one renderer process may contain different
origin sites in iframes, and the security monitor for the check of
these storage is deployed in the renderer. Considering cookies an
example, we find that by setting m_cookieURL as the targeted
site’s URL in the Document object used in security-check func-
tions9, the attacker can get/set cookies of arbitrary origins. Sim-
ilarly, setting m_protocol, m_host, and m_port used in the
functions10 allows the attacker to access data in localstorage and
indexedDB of the targeted site.

5.4 Identifying Critical Data
Chrome has over 5 million lines of code. It is quite challenging

to find the security monitors and identify the critical data for the
SOP enforcement. We have taken a best-effort approach to identify
the decision-making data for the SOP checks as shown in Figure 7.
Our methodology is described below.
1) Test generation. We set up an experimental website, say http
s://a.com. The site’s page contains JavaScript code for vari-
ous SOP-related functionalities (e.g., loading sites into iframes and

9Such as WebCookieJar::cookies and
WebCookieJar::setCookie.

10Implemented as WebStorageNamespaceImpl::creat-
eStorageArea.



Normal	  
Traces	  

Viola.ng	  
Ac.ons	  

Normal	  
Ac.ons	  

Viola.ng	  
Traces	  

Security	  Checks	  
&	  Decision-‐
Making	  Data	  

Exploitable	  
Cri.cal	  Data	  

Valida.on	  
with	  Debugger	  
and	  Exploits	  

Figure 7: Overview of the critical data identification. We trigger
the normal/violating actions in the experimental site, and record
the invoked functions/return values as traces. By comparing the
traces, we identify the decision-making data in the security-check
functions. Finally, we modify the data to verify whether they are
exploitable to bypass SOP or not.

blink::SecurityOrigin::canAccess	  	  

blink::isOriginAccessibleFromD
OMWindow	  	  

blink::canAccessFrame	  	  

blink::BindingSecurity::shouldAl
lowAccessToFrame	  	  

blink::securityCheck	  	  

blink::V8Window::namedSecuri
tyCheckCustom	  	  

v8::internal::Isolate::MayAccess	  	  

Figure 8: The invoked func-
tions when accessing an
iframe.

blink::SecurityOrigin::isSameSc
hemeHostPort	  	  

blink::FrameLoader::shouldInte
rruptLoadForXFrameOp>ons	  	  

blink::DocumentLoader::respon
seReceived	  	  

blink::RawResource::responseR
eceived	  

blink::ResourceLoader::didRece
iveResponse	  	  

content::WebURLLoaderImpl::C
ontext::OnReceivedResponse	  	  

content::ResourceDispatcher::
OnReceivedResponse	  	  

Figure 9: The invoked func-
tions when loading a site into
an iframe.

accessing their contents), which can be triggered to perform nor-
mal actions (following SOP) and SOP-violating actions. For ex-
ample, we run the scripts using contentDocument to access to
a.com in an iframe as a normal action or to access a cross-origin
site b.com as a violating action. Typically, Chrome throws an er-
ror for this violating action.
2) Generating execution traces. We generate the execution traces
for both actions. For instance, we attach the renderer process for
the experimental page with a debugger like GDB and load sym-
bols for the renderer module. For one functionality such as the
contentDocument interface, we find a related function (e.g.,
canAccessFrame) in the source code11 and set a breakpoint for this
function. Next, we trigger the normal action for the functionality,
the process will stop at the breakpoint. By backtracing and step-
ping into invoked functions, we record the invoked functions and
variables/return values as the trace for the normal action. Analo-
gously, we generate the trace for the SOP-violating action. We re-
peat this trace-generating step till we have adequate information to
differentiate the trace of the normal action from the violating one’s.
Figure 8 and 9 demonstrate the invoked functions for accessing an
iframe and loading a site into an iframe.
3) Identifying the deviations in data/function ways. The dif-
ference between the normal action and the violating one is that
the latter one violates the specific SOP check, e.g., the check for
contentDocument. Thus the corresponding traces also reflect
this difference. By analyzing the traces for one SOP-related func-
tionality, we find the functions that in different traces contain differ-
ent return values or different values for the same variable. For ex-
ample, the function SecurityOrigin::canAccess returns
true in the normal trace, but it returns false in the violating trace.
We label these security-check functions with red color in Figure 8

11In Chrome, we can locate the majority of the renderer’s implemen-
tation code in the directory third_party/WebKit/Source and con-
tent/renderer.

and 9. Within these functions, we can also identify the variables
called decision-making data, which influence the return values. In
addition to the variable having different values in two traces, we
also find several decision-making data (e.g., m_universalAcc-
ess) that have the same value in different traces but can actually
affect the function’s return.
4) Validating the corruption attack concretely. After identifying
the decision-making data, we first verify them with the debugger.
We set breakpoints at the security-check functions, and trigger the
violating action. After modifying the decision-making data (e.g.,
setting m_universalAccess as true), we resume the execution
of the process. If we receive the same result as the normal action’s,
as well as Chrome does not throw an error message, we success-
fully bypass the security-check functions; otherwise, the decision-
making data do not work. In addition, we validate the critical data
that pass the first phase with real memory corruption exploits. By
exploiting memory corruption vulnerabilities [8] (e.g., heap buffer
overflow), we now have the privilege to arbitrary read/write data
in the memory space in the renderer process. Using that, we can
verify if the security checks can be bypassed by corrupting the re-
spective critical data associated with it. In cases where the lifespan
of the critical data is not within the influence of the memory cor-
ruption exploit, we categorize it as a non-exploitable critical data.
The results passing the two-phase verification are summarized in
Table 2.

6. MITIGATING WEB/LOCAL ATTACKS
As the web/local attacks discussed in the paper involve both

client-side exploits and server-side integration services, we can mit-
igate the attacks from both sides.
Defense on the side of cloud services. As the web/local integration
is a necessary component of web/local attacks, to mitigate these at-
tacks, cloud service providers should restrict the privileges of their
web interfaces:

• Distinguish the request of its website from the one of its native
client, which can be achieved by setting headers with different
random strings for two types of requests.

• Restrict the privileges for the web interface. For instance, the
files uploaded from the website can be added into the local folder,
but they are only readable without preserving the original per-
missions such as executable.

• Require the user’s consent when accessing the local system. For
example, before the web interface instructs the cloud service to
install an app or run remote commands on the local system, its
native client on the system should prompt the user and request
for her consent. If she agrees on the operation, the web interface
can continue accessing the local system; otherwise, the request
for the operation is denied.

Defense on the side of web browsers. Another perspective of de-
fenses is to thwart our data-oriented attack for bypassing SOP en-
forcement on the browser side. One obvious solution is to partition
each origin into a separate process, including sub-resources, as pro-
posed by previous research prototypes, e.g., OP [52], Gazelle [72],
IBOS [69] and OP2 [53]. In fact, Google Chrome has experi-
mented with such a prototype called “Site Isolation” [32] including
“Out-of-Process iframes” [26]; however, the design does not at-
tempt to partition sub-resources other than iframes and has not yet
transitioned to the release versions. We have contacted Google’s
Chrome team and have verified that it is still a work in progress



with a massive refactoring and challenging open problems. The
hurdles include balancing the performance overhead with isolation
and retrofitting the new design on the legacy codebase while main-
taining compatibility with the web. The prohibitive performance
overhead of isolating all origins is consistent with previous con-
jectures. [50]. If all these resources are isolated by different pro-
cesses, around 1 GB memory overhead (one browser process re-
quires nearly 20 MB memory [40]) will be incurred for loading the
single page. It is clear that more work has to be done in this area for
a complete solution. Hence, we discuss here simpler, incremental
mitigations against specific attacks that we presented.

The mitigations are based on the following observation: in order
for attackers to corrupt critical data, they have to (a) locate the data
objects in memory and (b) change their values. In addition, (c)
the values set by attackers must be used by the application. All
three conditions are necessary for a successful attack. As such,
we propose to combine address space randomization (ASLR) with
data-flow integrity (DFI) as the basic mechanism for the mitigation.

6.1 Proposed Browser-Side Mitigation
Let the set of sensitive data which we aim to protect be D. In

our attacks, the sensitive data identified is in Table 2. Our defense
works by storing D in a sensitive memory segment R, the location
of which is randomized at load time. The attacker is assumed to
have access to memory; hence, we protect the base address of R by
always keeping it in a dedicated register XMMR and never leak-
ing it to memory. Legitimate access to R are always accessed by
indexing with the XMMR as the base via register operations only,
and all such accesses are confined to the range of R. Finally, we
ensure that no legitimate pointers to R are located outside of R, that
is, R is the transitive closure of pointers referencing to the sensitive
data D. With these invariants, formalized below, we can ensure
that the attacker cannot directly find the location of any data in R
with significant probability, without using a legitimate XMMR-
based indexing. Note that this eliminates our fingerprinting attack
in Section 3, as well as precludes our use of cross-partition ref-
erences since such references are eliminated by construction. We
have implemented this mitigation in Chromium 33, and report on
the results in Section 6.3.

This mitigation significantly raises the bar for the attacker, since
the attacker is forced to use XMMR-based indexing to access
sensitive instructions. As the attacker cannot violate CFI, this re-
duces the number of instruction where it can mount an attack from
drastically. The indices used in such instructions could still be
forged, allowing the adversary to swap an access XMMR[i] with
XMMR[j] where i 6= j, from those handful of legitimate instruc-
tions. A final defense could be used to tighten the protection of
indices used in XMMR operations. Specifically, we use a form
of DFI for this. DFI ensures that data writes to a location x is
bound to a small set of statically identified instructions Ix, signif-
icantly narrowing down the points in the program execution that
could be used to corrupt indices into R. Our enforcement for DFI
is cryptographic, similar to CCFI [61] except that it protects indices
rather than code pointers. Specifically, x is authenticated-encrypted
with its address as the key. The instructions statically determined
to legitimately modify x seals it after modification while the in-
structions which read it verify the integrity of the authenticated-
encrypted x. This locks down the set of instructions that could be
used to mount corruption of indices into R to a small set. Though
not a comprehensive defense, we believe this mitigation signifi-
cantly reduces the attack surface, and eliminates our specific at-
tacks presented.

  0%

  1%

  2%

  3%

  4%

  5%

  6%

  7%

  8%

  9%

FILE−Scheme

X−Frame−Options

XMLHttpRequest

getImageData

contentDocument

window.frames

window.parent

window.open

LocalStorage

IndexedDB

average

Figure 10: Performance overhead of the implemented mitigation.

6.2 Implementation
We have implemented a prototype of the proposed mitigation

to enforce requirements described in Section 6.1. Although the
current implementation only protects the identified data shown in
Table 2, other critical data identified in the future can also be pro-
tected with the same method. The address of this secret memory
region should be stored in XMM registers. However, this requires
the recompilation of all libraries used by Chromium. To reduce
the programming difficulty, our prototype does not reserve XMM
registers for the whole program. Instead, when the critical object
is visited, we save the XMM registers and load the secret address
from browser kernel process with an inter-process call (IPC). Once
the data is accessed, we restore the original value of XMM regis-
ters. In total we modified 485 lines of code, mainly focusing on file
SecurityOrigin.cpp and SecurityOrigin.h.

With our prototype, attackers cannot directly corrupt the critical
objects or the index to bypass SOP policy. However, attackers may
try to change pointers of the index to achieve similar attacks [55].
Although possible in theory, we figure out that this attack is not
practical in Chromium. Due to the complicated connection be-
tween different objects, attackers have to collect a large amount
of accurate information to forge a “legitimate” critical object. Oth-
erwise, the process will crash due to invalid pointer dereference.

6.3 Evaluation
To check the effectiveness of our implementation, we run our

attack again on the modified Chromium. The attack fails to lo-
cate the security-critical objects from the system heap partition,
as they have been moved to the dedicated secret memory region.
This implies that the current implementation can prevent such data-
oriented attacks.

We also measure the performance overhead introduced by the
extra operation for critical objects access (e.g., register saving and
restoring). We run several micro-benchmarks with the original
Chromium and the modified one. Each benchmark performs one
SOP-related operation in Table 2 100 times. Results of the micro-
benchmarks are shown in Figure 10. As we can see, our pro-
tection with randomization introduces 3.8% overhead on average
to each SOP-related operation. Considering the load time of the
whole webpage, we believe such overhead will not introduce per-
ceivable delay to user experience. We have also tested the modified
Chromium with standard browser benchmarks [22, 25, 13], and
do not notice any statistically significant difference from the orig-
inal version. This is reasonable as most of the benchmarks do not
trigger cross-origin accesses, thus the extra protection code is only
triggered a few times during the critical object creation.

Our evaluation shows that the current implementation nullifies



our attacks with a negligible performance penalty. It is straight-
forward to extend current implementation to protect other critical
objects (like the pointers of the known critical objects).

7. DISCUSSION & RELATED WORK
In this section, we discuss alternative full defenses and the chal-

lenges in adopting them in existing code bases.
Deploy XFI ubiquitously. XFI [51] combines software-based fault
isolation (SFI) [71, 74, 66] with control-flow integrity (CFI)) [39,
38], and supports both fine-grained memory access control and
memory isolation guarantees. We can deploy XFI to isolate each
origin into a separate SFI-enforced fault domain (or partition), and
to completely remove all direct cross-partition references. To do
this, the renderer could allocate and isolate all objects belonging to
origin A to its own fault domain. A’s security monitor, running in
its own separate fault domain, is responsible for setting up the seg-
ment base and offset for the origin A’s partition. SFI-enabled code
(e.g., the JavaScript interpreter) is guaranteed to execute within A’s
partition unless the segment base / offset is changed. The security
monitor can ensure that only it has access to these SFI-critical reg-
isters. It is necessary to ensure the complete defense against code
injection and reuse attacks, in addition, to ensure the guarantees.
When A wishes to access objects either in the security monitor or
the origin partition B, it must explicitly jump into a designated point
into the security monitors (enforced by CFI checks). The security
monitor can marshall data back-and-forth between these A’s parti-
tion and B’s.

This solution is plausible, but it raises several concerns. First, we
still need to trust the security monitor to be free from vulnerabili-
ties; otherwise, even SFI would allow corruption of security-critical
state of the monitor. Second, there is a strong assumption about the
attacker’s ability to perpetrate control-oriented exploits in the pres-
ence of CFI. Though CFI is gaining deployment in commodity sys-
tems [70, 34], the security it offers is not perfect. Third, the perfor-
mance impact of SFI-enforced solution in a browser environment
could be high, because of the need for frequent context-switches to
the security monitor partition. A careful implementation and em-
pirical analysis of the performance of such a design is a promising
future work. Finally, applying such a defense to an existing code-
base is an independent challenge in its own right.
Fine-grained Data Layout Randomization. We have shown in
Section 4.2 that simply using commodity ASLR and even random-
izing the offsets between objects are not sufficient, since finger-
printing techniques can still work. Further, objects may hold ref-
erences to other objects, which can be used to traverse objects in a
non-linear fashion bypassing spatial memory error defenses. One
way to bypass fingerprinting techniques is to add “honey” objects
with the same layout structure as other objects. These objects are
designed to mislead attackers and will crash the browser if it is
modified. Another approach is to randomize the internal layouts of
objects, so that it may be hard for the attacker to devise a deter-
ministic fingerprinting strategy [46, 59]. This is again a plausible
approach, but such fine-grained randomization may incur a run-
time cost for field lookups with randomized mappings. Secondly,
for most objects the amount of entropy in the layout structure is
small, and may not provide a robust defense against multiple at-
tack attempts. Finally, changing the layout structure of objects may
have a high compatibility cost with legacy code of the browser, and
external interfaces (e.g., plugins) it may have. We believe a solu-
tion that addresses performance, compatibility and a high entropy
to data objects layouts is an interesting open problem.
Memory Safety. In addition to the defenses discussed above, we

can enforce memory safety to thwart data-oriented attacks, i.e., en-
forcing data-flow integrity (DFI) [68, 73, 45]. By performing dy-
namic information flow tracking [73, 75] or analyzing the memory
modification instructions [45, 77], we can figure out the illegiti-
mate memory read/write operations and detect the memory corrup-
tion attacks before the SOP bypassing occurs. However, DFI can
cause large performance overheads and requires lots of manual de-
classifications, which makes it presently impractical.

Alternatively, enforcing memory safety can mitigate the mem-
ory corruption attacks at the beginning. Numerous research ap-
proaches, e.g., Cyclone [57], CCured [65], SoftBound [63] and
CETS [64], are proposed to provide memory safety for type-unsafe
languages, e.g., C. To prevent data-oriented attacks we used in this
paper, a complete memory safety is required for the browser’s ren-
derer. Nevertheless, to guarantee the memory safety has been a
systemic challenge for over a decade. Though Google Chrome is
continually advancing, e.g., address-sanitizer [1], the memory vul-
nerabilities for Chrome as shown in Figure 2 suggest that the com-
plete memory safety may still be challenging.

8. CONCLUSION
Chrome’s process-based design does not isolate different web

origins, but only promises to protect “the web” from “the local sys-
tem”. In this paper, we demonstrate that existing memory vulner-
abilities in the renderer can be exploited to bypass the SOP en-
forcement, and leverage the web-based cloud services to further
access the local system, e.g., drop executables/scripts in the local
file system. Our main results show concrete attack implementa-
tions, which explain the dangers of sharing process address space
across origins in the browser, and its impact on the local system.
As the first step, we employ address and data space randomization,
and implement a prototype to protect SOP-related critical data in
Chrome, which introduces negligible overhead and raises the bar
against data-oriented attackers.

9. ACKNOWLEDGEMENT
We thank the anonymous reviewers for their helpful feedback.

We also thank Charlie Reis, Adrienne Porter Felt and Google Chrome
team for useful discussions and feedback on an early version of
the paper. This work is supported in part by the National Re-
search Foundation, Prime Minister’s Office, Singapore under its
National Cybersecurity R&D Program (Award No. NRF2014NCR-
NCR001-21) and administered by the National Cybersecurity R&D
Directorate.

10. REFERENCES
[1] AddressSanitizer (ASan). https:

//www.chromium.org/developers/testing/addresssanitizer.
[2] AddressSpaceRandomization.

https://chromium.googlesource.com/chromium/blink/+/
master/Source/wtf/AddressSpaceRandomization.cpp.

[3] Android intents with chrome.
https://developer.chrome.com/multidevice/android/intents.

[4] Canvasrenderingcontext2d.getimagedata().
https://developer.mozilla.org/en-US/docs/Web/API/
CanvasRenderingContext2D/getImageData.

[5] Chromium Issue Tracker.
https://code.google.com/p/chromium/issues/list.

[6] CSP (content security policy).
https://developer.mozilla.org/en-US/docs/Web/Security/CSP.

[7] CSP policy directives. https://developer.mozilla.org/en-US/
docs/Web/Security/CSP/CSP_policy_directives.



[8] CVE-2014-1705. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-1705.

[9] Demo: Dropbox. https://youtu.be/P-oX0wEasz4.
[10] Demo: FILE Scheme. https://youtu.be/IPWJzzpvJdA.
[11] Demo: Google Play. https://youtu.be/nKyvCo5cn6c.
[12] Demo: VNC. https://youtu.be/dYSTxmNVgxI.
[13] DROMAEO, JavaScript Performance Testing.

http://dromaeo.com.
[14] Dropbox Announces User Base Exceeds 400 Million, with

Eight Million Business Users. http://www.cloudcomputing-
news.net/news/2015/jun/26/dropbox-announces-user-base-
exceeds-400-million-eight-million-business-users/.

[15] Github Press. https://github.com/about/press.
[16] Google Chrome Exploitation - A Case Study.

http://researchcenter.paloaltonetworks.com/2014/12/
google-chrome-exploitation-case-study/.

[17] Google Chrome Vulnerability Statistics.
http://www.cvedetails.com/product/15031/Google-Chrome.
html?vendor_id=1224.

[18] Google Drive Has Passed 240M Active Users.
http://thenextweb.com/google/2014/10/01/google-
announces-10-price-cut-compute-engine-instances-google-
drive-passed-240m-active-users/.

[19] HTTP State Management Mechanism.
http://tools.ietf.org/html/rfc6265.

[20] Indexed Database API. http://www.w3.org/TR/IndexedDB/.
[21] Inter-Process Communication. https://www.chromium.org/

developers/design-documents/inter-process-communication.
[22] JetStream Benchmark,. http://browserbench.org/JetStream/.
[23] Linux and Chrome OS Sandboxing. https:

//code.google.com/p/chromium/wiki/LinuxSandboxing.
[24] Multi-Process Architecture. https://www.chromium.org/

developers/design-documents/multi-process-architecture.
[25] Octane Benchmark.

https://code.google.com/p/octane-benchmark.
[26] Out-of-Process Iframes. https://www.chromium.org/

developers/design-documents/oop-iframes.
[27] Partitionalloc. https://chromium.googlesource.com/

chromium/blink/+/master/Source/wtf/PartitionAlloc.h.
[28] Process Models. https://www.chromium.org/developers/

design-documents/process-models.
[29] Redirecting to intent from manually entered url gives

Unknown URL Scheme Error. https:
//bugs.chromium.org/p/chromium/issues/detail?id=477456.

[30] Same Origin Policy for JavaScript. https:
//developer.mozilla.org/En/SameoriginpolicyforJavaScript.

[31] Sandbox. https://www.chromium.org/developers/
design-documents/sandbox.

[32] Site Isolation. https://www.chromium.org/developers/
design-documents/site-isolation.

[33] SOP Bypass Demos. https://youtu.be/fIHaiQ4btok.
[34] Visual Studio 2015 Preview: Work-in-Progress Security

Feature.
https://blogs.msdn.microsoft.com/vcblog/2014/12/08/
visual-studio-2015-preview-work-in-progress-security-feature/.

[35] Web Storage. http:
//www.w3.org/TR/webstorage/#the-localstorage-attribute.

[36] Window.postMessage(). https://developer.mozilla.org/en-US/
docs/Web/API/Window/postMessage.

[37] Market Share Reports. https://netmarketshare.com/, 2015.

[38] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. A Theory
of Secure Control Flow. In International Conference on
Formal Engineering Methods. 2005.

[39] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow Integrity. In ACM Conference on Computer and
Communications Security, 2005.

[40] D. Akhawe, P. Saxena, and D. Song. Privilege Separation in
HTML5 Applications. In USENIX Security Symposium,
2012.

[41] S. Andersen and V. Abella. Memory Protection
Technologies, Data Execution Prevention. Microsoft
TechNet Library, September 2004.

[42] M. Andreessen. NCSA Mosaic Technical Summary.
National Center for Supercomputing Applications, 1993.

[43] A. Barth, C. Jackson, and C. Reis. The Security Architecture
of the Chromium Browser. http://seclab.stanford.edu/websec/
chromium/chromium-security-architecture.pdf, 2008.

[44] A. Barth, J. Weinberger, and D. Song. Cross-Origin
JavaScript Capability Leaks: Detection, Exploitation, and
Defense. In USENIX Security Symposium, 2009.

[45] M. Castro, M. Costa, and T. Harris. Securing Software by
Enforcing Data-Flow Integrity. In USENIX Symposium on
Operating Systems Design and Implementation, 2006.

[46] P. Chen, J. Xu, Z. Lin, D. Xu, B. Mao, and P. Liu. A Practical
Approach for Adaptive Data Structure Layout
Randomization. In European Symposium on Research in
Computer Security, 2015.

[47] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.
Non-Control-Data Attacks Are Realistic Threats. In USENIX
Security Symposium, 2005.

[48] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System
Kernels. In IEEE Security & Privacy, 2014.

[49] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin.
Robust Signatures for Kernel Data Structures. In ACM
Conference on Computer and Communications Security,
2009.

[50] X. Dong, H. Hu, P. Saxena, and Z. Liang. A Quantitative
Evaluation of Privilege Separation in Web Browser Designs.
In European Symposium on Research in Computer Security.
2013.

[51] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software Guards for System Address Spaces.
In USENIX Symposium on Operating Systems Design and
Implementation, 2006.

[52] C. Grier, S. Tang, and S. T. King. Secure Web Browsing with
the OP Web Browser. In IEEE Security & Privacy, 2008.

[53] C. Grier, S. Tang, and S. T. King. Designing and
Implementing the OP and OP2 web Browsers. ACM
Transactions on the Web, 2011.

[54] B. Hassanshahi, Y. Jia, R. H. Yap, P. Saxena, and Z. Liang.
Web-to-Application Injection Attacks on Android:
Characterization and Detection. In European Symposium on
Research in Computer Security, 2015.

[55] H. Hu, Z. L. Chua, A. Sendroiu, P. Saxena, and Z. Liang.
Automatic Generation of Data-Oriented Exploits. In
USENIX Security Symposium, 2015.

[56] H. Hu, S. Shinde, A. Sendroiu, Z. L. Chua, P. Saxena, and
Z. Liang. Data-Oriented Programming: On the Expressive-
ness of Non-Control Data Attacks. In IEEE Security &
Privacy, 2016.



[57] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A Safe Dialect of C. In
USENIX Annual Technical Conference, 2002.

[58] S. Lekies, M. Heiderich, D. Appelt, T. Holz, and M. Johns.
On the Fragility and Limitations of Current Browser-
Provided Clickjacking Protection Schemes. Workshop on
Offensive Technologies, 2012.

[59] Z. Lin, R. D. Riley, and D. Xu. Polymorphing Software by
Randomizing Data Structure Layout. In International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2009.

[60] S. Maffeis, J. C. Mitchell, and A. Taly. Object Capabilities
and Isolation of Untrusted Web Applications. In IEEE
Security & Privacy, 2010.

[61] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières.
CCFI: Cryptographically Enforced Control Flow Integrity. In
ACM Conference on Computer and Communications
Security, 2015.

[62] S. McCanne and V. Jacobson. The BSD Packet Filter: A
New Architecture for User-Level Packet Capture. In
USENIX, 1993.

[63] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2009.

[64] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In ACM
International Symposium on Memory Management, 2010.

[65] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe Retrofitting of Legacy Code. In Principles of
Programming Languages, 2002.

[66] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting Software Fault
Isolation to Contemporary CPU Architectures. In USENIX
Security Symposium, 2010.

[67] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space Layout
Randomization. In IEEE Security & Privacy, 2013.

[68] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee.
Enforcing Kernel Security Invariants with Data Flow
Integrity. In Network & Distributed System Security
Symposium, 2016.

[69] S. Tang, H. Mai, and S. T. King. Trust and Protection in the
Illinois Browser Operating System. In USENIX Symposium
on Operating Systems Design and Implementation, 2010.

[70] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
U. Erlingsson, L. Lozano, and G. Pike. Enforcing
Forward-edge Control-flow Integrity in GCC & LLVM. In
USENIX Security Symposium, 2014.

[71] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient Software-based Fault Isolation. In ACM SIGOPS
Operating Systems Review, 1994.

[72] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The Multi-Principal OS
Construction of the Gazelle Web Browser. In USENIX
Security Symposium, 2009.

[73] W. Xu, S. Bhatkar, and R. Sekar. Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range
of Attacks. In USENIX Security Symposium, 2006.

[74] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,

T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code.
In IEEE Security & Privacy, 2009.

[75] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving Application Security with Data Flow Assertions.
In Symposium on Operating Systems Principles, 2009.

[76] Yu Yang. ROPs are for the 99%, CanSecWest 2014.
https://cansecwest.com/slides/2014/ROPs_are_for_the_99_
CanSecWest_2014.pdf, 2014.

[77] B. Zeng, G. Tan, and G. Morrisett. Combining Control-Flow
Integrity and Static Analysis for Efficient and Validated Data
Sandboxing. In ACM Conference on Computer and
Communications Security, 2011.

[78] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical Control Flow
Integrity and Randomization for Binary Executables. In
IEEE Security & Privacy, 2013.

[79] M. Zhang and R. Sekar. Control Flow Integrity for COTS
Binaries. In USENIX Security Symposium, 2013.

APPENDIX
A. BYPASSING INTRA-PROCESS

DEFENSES
Chrome implements its own heap allocator called PartitionAlloc

to separate the heap memory for each renderer process [27]. Within
a renderer, PartitionAlloc separates allocations on the renderer’s
heap into four partitions and avoids allocating the metadata and
user-input data in the same partition. Chrome deploys its built-
in ASLR to assign randomized addresses for different partitions
with its internal random address generator [2]. At present, the four
partitions are as follows:

• Object Model Partition. This partition stores objects inherited
from the Node class, which is from the DOM tree.

• Rendering Partition. This partition stores objects from the render
tree.

• Buffer Partition. The objects from the Web Template Framework
(WTF), e.g., ArrayBuffer, are allocated here.

• General (System Heap) Partition. The allocations from WTF::-
fastMalloc are stored in this partition12.

Each partition is made up of a sequence of superpages of 2M
bytes, which are divided into buckets based on the size the re-
quested allocation. The superpage contains guard areas (or guard
pages) that are reserved and inaccessible, which prevent the mem-
ory exploit from sequentially reading/writing (or overflowing) the
memory across superpages.

To demonstrate the feasibility of bypassing intra-process defenses,
we have verified our attack by exploiting the renderer in Chrome
33 using a memory vulnerability found in the JavaScript engine
V8 [8]. This vulnerability allows an attacker to modify the length
of a JavaScript array to any value. It enables the attacker to read-
/write the data relative to the base pointer of the vulnerable array.
To corrupt the security-critical data, we use four steps to exploit the
vulnerability as shown in Figure 11.
Finding the address of the fingerprinting object ( 1©). We first
create a vulnerable array using JavaScript (e.g., ArrayBuffer) and

12We discuss the four partitions based on the PartitionAlloc’s im-
plementation in Chrome 33. In Chrome 45, Object Model Partition
and Rendering Partition are replaced by Node Partition and Layout
Partition respectively.



Superpage A 

Superpage A+1 

Vulnerable	  Array	  

Fingerprin0ng	  String	  
offset 

Guard	  Page	  

Guard	  Page	  

Guard	  Page	  

Guard	  Page	  

Object	  

Targeted	  Object	  

Guard	  Page	  

Guard	  Page	  

Scan	  +	  Pa;ern	  
Matching	  

Buffer Partition 

System Heap Partition 

Superpage B 

1

2

3

4

Object	  

A;ribute	  
pointer	  

String	  
pointer	  

Scan	  +	  Count	  

A;ribute	  
pointer	  

String	  
pointer	  

1

Figure 11: Overview of how to obtain the base address of the vul-
nerable array and find the fingerprinting object.

it will be allocated in one superpage in Buffer Partition. Thus we
create a fingerprinting object (e.g., a string with value ‘aa...a’) after
the vulnerable array. In order to obtain the address of the string, we
create multiple (e.g., 0x200) DOM elements (e.g., DIV) with differ-
ent attributes and each attribute points to the same string. Chrome
allocates the elements in DOM Model Partition. The attribute ob-
jects, on the other hand, are created as elements of a WTF::Vector
object and is allocated in the Buffer Partition too, as shown in Fig-
ure 11. Note that we want to force the creation of these attribute
objects in a new superpage in the buffer partition. We achieve this
by spraying the current superpage of the buffer partition with ob-
jects in order to fill it up. Next, we leverage the vulnerable array to
perform a linear scan of the memory in the subsequent superpage to
count the number of the occurrence for any 4-byte value (e.g., the
size of a pointer). Statistically, we can infer that the non-zero value
with the highest count is the address of the fingerprinting object
(e.g., object_address).
Finding the address of the vulnerable array ( 2©). By conducting
a stepwise search for the pattern of the fingerprinting object (i.e., a
sequence of ‘a’) using the vulnerable array, we can obtain the offset
between the array and the object. By subtracting the offset from the
base address of the fingerprinting object, we obtain the vulnerable
array’s base address (i.e., base_address = object_address −
offset).
Leveraging the cross-partition references ( 3©). When loading
a page into an iframe, a SecurityOrigin object is created to-
gether with a Frame object. This security object is allocated on the
system heap using the system allocator, rather than the custom par-
titions. Due to the presence of guard pages, we need to identify the
address range that is currently used as the system heap. Here, we
will utilize the attribute object we created previously again. Each
attribute object contains a pointer to a QualifiedNameImpl ob-
ject and a pointer to an AtomicString object. Note that Quali-
fiedNameImpl is allocated using the system allocator and hence
the pointer will be a cross-partition reference to the system heap.
By obtaining the largest QualifiedNameImpl address, we are

able to obtain an estimate on the maximum legitimate address for
the system heap.
Obtaining the address of the targeted object ( 4©). Take the SOP
enforcement for contentDocument as an example. To bypass
this SOP enforcement, we need to overwrite m_universalAcc-
ess to bypass SOP checks. Since we have an estimate on the max-
imum heap address, we can search from a high address to a low ad-
dress for the object’s pattern in the memory and obtain the address
of this targeted object (i.e., target_address). Finally, we can cal-
culate the index with the formula: index = (target_address −
base_address)/4, and use array[index] to overwrite the criti-
cal data (e.g., set m_universalAccess as true) to bypass SOP
checks. After this modification, we can bypass the SOP check for
contentDocument and access the content of arbitrary origins
within iframes. With the same method, we can bypass X-Frame-
Options and other SOP enforcements. Combining the steps 1©, 2©,
3© and 4© as shown in Figure 11, we can have an end-to-end exploit

to bypass DEP, CFI, ASLR and partitioning, as well as corrupt the
SOP-related critical data and achieve the four cross-origin access
capabilities.

B. BYPASSING DISCRETIONARY
CONTROLS

In addition to the capabilities to directly access cross-origin data,
there are numerous discretionary controls in Chrome, e.g., CSP,
and user prompts for geolocation. Bypassing them, the attacker
can achieve the capability to run inline code in the targeted sites,
and directly obtain the geolocation information. For concreteness,
we demonstrate how to bypass these controls.

Content Security Policy (CSP) [6] provides directives [7] in HTTP
response headers to instruct browsers to restrict the sources for dif-
ferent types of resources. For example, the “script-src” directive
specifies valid sources for JavaScript. By setting proper CSP di-
rectives, the site can instruct Chrome to only load the permitted
documents (e.g., scripts under the same domain) and execute them
in the page. The strict CSP directives in a site could prevent the
attacker’s site from injecting scripts or directly manipulating DOM
elements on the site in iframes. In Chrome, we find that the CSP-
check functions are in the renderer. By enabling m_allowSelf,
m_allowStar, m_allowEval and m_allowInline in the
CSPSourceList object, we can bypass the corresponding checks.
Therefore, we can use inline resources, e.g., inline scripts , JavaScript
URLs, and inline event handlers, in the targeted site in an iframe or
tab. In this way, the renderer attacker can bypass the CSP directives
to run arbitrary code on the targeted sites in iframes.

HTML5 provides JavaScript APIs to enable sites to obtain the
browser’s geolocation, which requires the user’s explicit approval.
Chrome pops up with a permission prompt (controlled by the browser
kernel) for the user to determine whether to allow the site to ac-
cess the GPS sensor or not. We find that though the prompt is
controlled by the browser kernel, the attacker’s script can mod-
ify m_geolocationPermission as PermissionAllowed in the
Geolocation object to bypass the check of Geolocation::-
isAllowed in the renderer. Then the attacker can obtain the
user’s geolocation using JavaScript.


