
Man-in-the-browser-cache: Persisting HTTPS
attacks via browser cache poisoning

Yaoqi Jia a, Yue Chen b, Xinshu Dong c, Prateek Saxena a, Jian Mao b,*,
Zhenkai Liang a

a School of computing, National University of Singapore, 13 Computing Drive, COM1 #3-27, Singapore 117417
b School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Haidian District,
Beijing 100191, China.
c Advanced Digital Sciences Center, 1 Fusionopolis Way, #08-10 Connexis North Tower, Singapore 138632

A R T I C L E I N F O

Article history:

Received 9 February 2015

Received in revised form 17 July

2015

Accepted 21 July 2015

Available online 3 August 2015

A B S T R A C T

In this paper, we present a systematic study of browser cache poisoning (BCP) attacks, wherein

a network attacker performs a one-time Man-In-The-Middle (MITM) attack on a user’s HTTPS

session, and substitutes cached resources with malicious ones. We investigate the feasi-

bility of such attacks on five mainstream desktop browsers and 16 popular mobile browsers.

We find that browsers are highly inconsistent in their caching policies for loading re-

sources over SSL connections with invalid certificates. In particular, the majority of desktop

browsers (99% of the market share) and popular mobile browsers (over a billion user down-

loads) are affected by BCP attacks to a large extent. Existing solutions for safeguarding HTTPS

sessions fail to provide comprehensive defense against this threat. We provide guidelines

for users and browser vendors to defeat BCP attacks. Meanwhile, we propose defense tech-

niques for website developers to mitigate an important subset of BCP attacks on existing

browsers without cooperation of users and browser vendors. We have reported our find-

ings to browser vendors and confirmed the vulnerabilities. For example, Google has

acknowledged the vulnerability we reported in Chrome’s HTML5 AppCache and has fixed

the problem according to our suggestion.

© 2015 Elsevier Ltd. All rights reserved.

Keywords:

Browser cache poisoning

Web security

Browser vulnerability

HTTPS

Script injection

1. Introduction

When browsing the web using HTTPS, if a user Alice ignores,
or clicks through, the browser’s SSL warning of an invalid SSL
certificate, she exposes her browser sessions to a Man-In-The-
Middle (MITM) attack, allowing attackers to intercept
communication in the SSL channel. Recent work has mea-
sured the click-through rates for SSL warnings, indicating that
more than 50% users click through SSL warnings (Akhawe and

Felt, 2013; Dhamija et al., 2006; Sunshine et al., 2009). A typical
solution is to improve warnings of invalid SSL certificates (Felt
et al., 2014; Sunshine et al., 2009). However, even with the knowl-
edge of an invalid certificate, users often temporarily click
through the warnings, e.g., to active Internet access in hotels
or cafes through a portal with the self-signed certificate (Chen
et al., 2009).

In this paper, we study the consequence of clicking through
SSL warnings, focusing on the impact on the browser
cache. After Alice clicks through one SSL warning, network

* Corresponding author. Tel.: + 861082317212.
E-mail addresses: jiayaoqi@comp.nus.edu.sg (Y. Jia), chenyue@ee.buaa.edu.cn (Y. Chen), xinshu.dong@adsc.com.sg (X. Dong), prateeks@

comp.nus.edu.sg (P. Saxena), maojian@buaa.edu.cn (J. Mao), liangzk@comp.nus.edu.sg (Z. Liang).
http://dx.doi.org/10.1016/j.cose.2015.07.004
0167-4048/© 2015 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:jiayaoqi@comp.nus.edu.sg
mailto:chenyue@ee.buaa.edu.cn
mailto:xinshu.dong@adsc.com.sg
mailto:prateeks@comp.nus.edu.sg
mailto:prateeks@comp.nus.edu.sg
mailto:maojian@buaa.edu.cn
mailto:liangzk@comp.nus.edu.sg
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2015.07.004&domain=pdf

attackers can substitute original web application resources (such
as JavaScript code and images) with malicious ones via MITM
attacks. By setting long-lived cache headers, the malicious re-
sources may be cached in Alice’s browser for a long time.These
malicious resources in the web cache1 are shared across all sites
visited by the same browser, affecting future browser ses-
sions involving these resources until the cache is cleared. We
call this class of attacks browser cache poisoning (BCP) attacks.
In our study, we classify BCP attack vectors into three types:
In same-origin BCP attacks, attackers poison one origin’s re-
sources once, and persist them over time using browser cache;
in cross-origin BCP attacks, attackers corrupt one origin’s
subresources imported from another origin; in extension-
assisted BCP attacks, attackers poison subresources inserted by
browser extensions.

For HTTPS sessions with invalid certificates, which we call
broken HTTPS sessions in this paper, browsers vary substan-
tially in how they display warnings and in their caching policies.
We evaluate BCP attacks on five mainstream desktop brows-
ers (such as Firefox and Chrome, which cover over 99% desktop
browser users by market share (A. Technica, 2015)), and 16
popular mobile browsers (such as Android Default Browser
and Dolphin, which have more than one billion mobile browser
users by download statistics). We find several serious vulner-
abilities in how browsers handle SSL warnings. For example,
we find that CM browser 5.0.22 does not check the validity of
sites’ certificates and never shows SSL warnings. In Firefox
3.6, Internet Explorer 8, and other old version browsers, SSL
warnings can be hidden/overlaid in web page frames using
clickjacking techniques (Huang et al., 2012). Further, the ma-
jority of mobile browsers prompt users with incomplete
information in SSL warnings, making it difficult for security-
conscious users to make informed decisions. For example,
when users visit sites with invalid certificates, several SSL
warnings do not include the site’s name and certificate’s con-
tents, or only include the name of the top-level URL rather
than the target site’s actual URL. Browser extensions in Safari
and Opera can inject external scripts loaded over HTTP
protocols2 into HTTPS sessions without raising any SSL or
mixed-content warnings, unlike in Chrome and Firefox. We
also find that 26 Android applications that embed
browsers do not display SSL warnings and are vulnerable to
BCP attacks. Such browser issues open up the opportunity for
BCP attacks.

Browsers provide more than one kind of caches, e.g., the
web cache and the HTML5 application cache (AppCache), and
enforce different caching policies. For valid HTTPS sessions,
all browsers respect the header’s directives and cache re-
sources properly. However, for click-through HTTPS sessions,
all these browsers but desktop-version Safari cache poisoned
resources in the web cache or in the HTML5 AppCache.
Caching policies for the HTML5 AppCache are different
between Chrome and Safari. Although Safari can prevent cache
poisoning through web application resources, HTTP scripts
injected into HTTPS sessions by extensions are cached

without triggering SSL warnings. We discuss these differ-
ences in depth in Section 4, and show that all five desktop
browsers and 16 mobile browsers are susceptible to BCP
attacks.We have reported our findings to these browser vendors.
Browser vendors, including the vendors of Chrome, Safari,
Maxthon, and Dolphin, have acknowledged our findings.
Google has confirmed our reported bug in AppCache and
awarded a bounty for this finding (Chromium, 2010; G. C. Team,
2015). It has also developed a fix for not caching resources
over broken HTTPS sessions in AppCache as we suggest in
Section 6.

Many existing defense solutions against HTTPS MITM
attacks, e.g., Channel ID (Balfanz and Hamilton, 2013), DANE
(Hoffman and Schlyter, 2012), CAA (Hallam-Baker and Stradling,
2013), HSTS (Hodges et al., 2012), HPKP (Evans and Palmer,
2011), SISCA (Karapanos and Capkun, 2014), and other best
practices (e.g., enabling CSP (W3C, 2015a)) are adopted in real-
world systems. Although they prevent a subset of BCP attacks,
none of them provide comprehensive protection. We study
the Alexa Top 100 websites, and find that only five sites are
protected in some browsers through these defense mecha-
nisms. By analyzing 31,377 websites supporting HTTPS out of
Alexa Top 1,000,000 sites, we find that only 510 (1.63%) sites
have proper protection enabled. Therefore, developers should
not rely on these defense mechanisms as a panacea for BCP
attacks. We discuss how browser vendors can make their
browser caching policies consistent and correct, thereby elimi-
nating the threat from BCP. Meanwhile, we discuss guidelines
for users to protect themselves against BCP attacks. As web-
sites cannot impel all browsers to implement proper protections
or force all users to use the upgraded browsers, we also propose
defense techniques for web developers to mitigate the
impact of these attacks without browser vendors’ and users’
cooperation.
Contributions. Though BCP attacks have been conceptually dis-
cussed in previous work (Kuppan, 2010; Saltzman and
Sharabani, 2009; Vallentin and Ben-David, 2010), we give the
first systematic measurement of the problem in widely-used
browsers and websites. We also give an in-depth discussion
of defense techniques. In particular, we make the following
contributions.

• Evaluating the susceptibility of desktop and mobile browsers.
Through experiments, we find inconsistency in SSL warn-
ings among browsers, which may cause victim users to click
through warnings.The incoherence of browser caching poli-
cies makes browsers vulnerable to BCP attacks. We find that
five mainstream desktop browsers and 16 popular mobile
browsers are susceptible to such attacks. We also find that
26 Android applications that embed browsers do not display
SSL warnings and are vulnerable to BCP attacks. Mean-
while, only five sites of Alexa Top 100 sites and 1.63% of
31,377 HTTPS websites of Alexa Top 1,000,000 sites have
partial protections.

• Analyzing existing defense mechanisms and proposing new
defense techniques. We discuss pros and cons of defense
mechanisms, and conclude that none of them provide full
protection against BCP attacks. We provide guidelines for
users and browser vendors to defeat such attacks com-
pletely, and propose defense techniques for website

1 In this paper, we use web cache to refer to the default browser
cache, which caches all HTTP/HTTPS resources unless the no-
cache header is set.

2 We refer to such scripts as HTTP scripts in this paper.

63c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

developers to mitigate cross-origin BCP attacks on the ex-
isting browsers.

• Systematic studying BCP and identifying additional attack
vectors. We present a systematic study of BCP attacks against
HTTPS. In addition to same-origin and cross-origin BCP
attacks, we also identify a new attack vector: the extension-
assisted BCP attack vector.

2. Background and related work

There are extensive research on attacks on HTTPS/SSL con-
nections and browser cache, as well as the defense solutions.
In this section, we first introduce browser cache, and then
discuss related work.

2.1. Background: browser cache

The main purpose of the browser cache is to reduce the loading
time of web pages and resources. Existing browsers employ
memory cache and disk cache to store resources, e.g., HTML
pages, JavaScript files, CSS files, PDFs, and so on (G. Developers,
2015). When users request such web resources, browsers au-
tomatically load the cached resources instead of sending
requests to remote servers, as Fig. 1 shows. Caches in brows-
ers mainly include the web cache and the HTML5 application
cache.The former is by default active for all web resources, while
the latter is an HTML5 feature that needs to be explicitly ac-
tivated by APIs and configurations in the web application. In
this paper, we show that the caching policies implemented in
various browsers allow attackers to compromise sessions and
make persistent the impact over time, if users click through
SSL warnings only once.
Web cache (shared across all sites). The web cache is the default
browser cache for all HTTP/HTTPS resources, shared across all
sites. Thus, once the browser caches a site’s resources over
HTTP/HTTPS, if another site requests the same resources, the
browser will load the cached copies instead of issuing new re-
quests to remote servers. Version 1.1 of HTTP provides cache-
control and expires headers to specify the expiration time of
cached resources, with the former having higher precedence
(Fielding et al., 1999). During the specified lifetime, when the
cached resources are requested, the browser will not issue any

GET request for them until the expiration time or maximum
age is reached. Thus in a BCP attack, once the attacker poisons
the targeted site’s resources in the web cache, the browser will
directly load the cached resources for all sites embedding these
resources. We will detail the different scenarios for BCP attacks
via web cache in Section 3.2.
HTML5 AppCache (dedicated per site). HTML5 introduces a
new type of cache, the HTML5 application cache (AppCache).
With AppCache, an entire web application can be stored locally,
including pages and resources, making the application acces-
sible even without Internet connections (Mozilla, 2015).
AppCache requires the web application to include a cache
manifest that specifies the resources to be cached. When the
web application is stored in AppCache, the browser will load
the cached resources until the manifest file is changed or the
AppCache is programmatically refreshed. In contrast to the
web cache, which is shared across all sites, resources in
AppCache can only be accessed by the owner site of the
resources. In other words, when a site instructs browsers to
store the specified resources in AppCache, browsers only allow
the site itself, not other sites, to load the cached resources
from AppCache.

2.2. Related work

There has been extensive research on attacks to HTTPS/SSL
connections and the browser cache, as well as corresponding
defenses.
Clicking through of SSL warnings. When an SSL warning is
shown for a web page, the user is supposed to close the page
to protect him/her from MITM attacks. However, 33.0% and
70.2% of users choose to click through SSL warnings on various
websites in Mozilla Firefox (beta channel) and Google Chrome
(stable channel) respectively, according to the investigation by
Akhawe and Felt (2013). Dhamija et al. observe a 68% click-
through rate, and Sunshine et al. even record 90–95% click-
through rates depending on the type of page (Dhamija et al.,
2006; Sunshine et al., 2009). Herzberg studies the basic and ad-
vanced indicators and their usability problems (Herzberg, 2009).
In addition, Sunshine et al. find that many respondents do not
understand SSL warnings, so they simply ignore the warn-
ings (Sunshine et al., 2009). These studies demonstrate that
users easily click through SSL warnings. In this paper, we
present the consequence after users click through SSL warn-
ings. We show that ignoring warnings can be disastrous to the
security and privacy of their web sessions.
Attacks against HTTPS. Prior research has unravelled numer-
ous attacks to compromise HTTPS (Bhargavan et al., 2014;
Callegati et al., 2009; Checkoway et al., 2014; Chen et al., 2009;
Karapanos and Capkun, 2014; Marchesini et al., 2005;
Marlinspike, 2009; Prandini et al., 2010). For example, Karapanos
and Capkun (2014) present Man-In-The-Middle-Script-In-The-
Browser (MITM-SITB) attacks to bypass enhanced Channel-
ID-based defenses. Chen et al. focus on a malicious proxy
named “Pretty-Bad-Proxy”, which targets browsers’ render-
ing modules above the HTTP/HTTPS layer to void the end-to-
end security properties of HTTPS (Chen et al., 2009). Bhargavan
et al. report new practical attacks against applications over TLS,
which utilize a combination of successive TLS handshakes over
multiple connections to disrupt client authentication (Bhargavan

Browser

Web Application

Parser④

③

① ②Network
Module

Cache

Fig. 1 – Illustration of loading resources in browsers via
network (paths 1 and 2 with solid lines) and via cache
(paths 3 and 4 with dotted lines).

64 c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

et al., 2014). The theoretical analysis and experiments from
Checkoway et al. (2014) show that it is practical to exploit the
Dual Elliptic Curve Deterministic Random Bit Generator (Dual
EC) (N. I. of Standards, 2015) as used in deployed TLS imple-
mentations. Prandini et al. (2010) and Callegati et al. (2009)
demonstrate practical examples to split the HTTPS stream to
attack secure web connections and conduct MITM attacks on
the HTTPS protocol. Marchesini et al. conduct a series of ex-
periments and show that client-side SSL is vulnerable to various
attacks, e.g., content-only and API attacks (Marchesini et al.,
2005). Fahl et al. mount MITM attacks on mobile applications
to analyze SSL security in Android (Fahl et al., 2012) and iOS
(Fahl et al., 2013).

In this work, instead of examining ways to directly thwart
HTTPS security, we focus on the implications of one-time com-
promise of an HTTPS session. We show that it can persistently
compromise the victim’s future sessions.
Attacks via browser cache. Felten and Schneider and Bortz and
Boneh deploy timing attacks on browser cache to sniff users’
browsing histories and steal private information (Bortz and
Boneh, 2007; Felten and Schneider, 2000). Wondracek et al. de-
anonymize social network users by analyzing users’ visited URLs
(Wondracek et al., 2010). Jia et al. show that timing attacks on
browser cache can also be used to infer victim users’
geolocations (Jia et al., 2014). On the other hand, researchers
have also examined attacks by poisoning web cache, HTML5
AppCache, and other storage (Bursztein et al., 2010; Johns et al.,
2013; Klein, 2011; Kuppan, 2010; Lekies and Johns, 2012;
Saltzman and Sharabani, 2009; Vallentin and Ben-David, 2010,
2014). For instance, Saltzman and Sharabani study HTTP cache
poisoning and categorize these attacks into passive and active
attacks (Saltzman and Sharabani, 2009). Vallentin and Ben-
David implement a tool called air-poison to mount browser cache
poisoning via HTTP in wireless networks (Vallentin and
Ben-David, 2010). They also quantify the effect of such attacks,
and note the conceptual security shortcomings and risks of
JavaScript content distribution networks (Vallentin and
Ben-David, 2014). Lekies and Johns investigate three attack sce-
narios, i.e., cross-site scripting, untrustworthy networks and
shared browsers, to show how an attacker is able to inject code
into web storage (Lekies and Johns, 2012). Kuppan, Klein and
Bursztein et al. demonstrate the cache poisoning attack to real-
world HTML5 applications on many browsers (Bursztein et al.,
2010; Klein, 2011; Kuppan, 2010). Johns et al. show that the
HTML5 Offline Application Cache can be misused to conduct
reliable DNS rebinding attacks (Johns et al., 2013).

Proxy cache poisoning attacks have been well studied (Huang
et al., 2011; Klein, 2011). For example, Klein discusses how to
use existing techniques, e.g., HTTP response splitting, to mount
poisoning attacks on the reverse proxy and forward proxy (Klein,
2011). Huang et al. conduct experiments to poison the HTTP
caches of transparent proxies via socket APIs, which cause ma-
licious contents to be served by the proxy to all of its users
(Huang et al., 2011). In this work, we focus on cache poison-
ing attacks on various browser cache, e.g., the web cache and
the HTML5 AppCache.

Although some of the attack vectors discussed in this paper
have been experimented in previous studies, in this paper, we
provide the first in-depth evaluation of the susceptibility of
desktop and mobile browsers to all three BCP attack vectors,

as well as a comprehensive analysis on whether existing so-
lutions can mitigate such attacks. Our evaluation results raise
serious concern on the security of HTTPS sessions in all popular
browsers.We further propose novel defense techniques for web-
sites to protect their sessions immediately before browsers
might adopt any BCP attack prevention mechanisms in future.
Defenses against HTTPS attacks and browser cache attacks.
On the defense side, numerous researchers propose various
solutions to protect HTTPS connections from attacks (Balfanz
and Hamilton, 2013; Braun et al., 2014; Dacosta et al., 2012; Dahl
and Sleevi, 2013; Dietz et al., 2012; Evans and Palmer, 2011;
Hallam-Baker and Stradling, 2013; Hodges et al., 2012; Hoffman
and Schlyter, 2012; Huang et al., 2014; Jackson and Barth, 2008;
Karapanos and Capkun, 2014; W3C, 2015a). To prevent privacy
leakage via browser cache, Jackson et al. propose a refined same-
origin policy to segregate browser cookie and cache to protect
browser states (Jackson et al., 2006). Jakobsson and Stamm neu-
tralize browser sniffing by performing URL personalization on
the fly at the server side (Jakobsson and Stamm, 2006). Jia et al.
(2014) advocate not to cache location-sensitive resources to
prevent leaking users’ geolocations.

We will make an in-depth discussion of these solutions in
Section 5, after describing our findings on BCP attacks. These
solutions are not sufficient to prevent all BCP attacks.

3. Problem overview

In this section, we describe the threat model, and define the
browser cache poisoning problem.

3.1. Threat model

In our threat model, the adversary is a network attacker, who
cannot compromise the victim’s browser or system. The at-
tacker uses a one-time MITM attack, intercepting the HTTPS
connections between Alice’s browser and the target site’s server
only once. The attacker can utilize a host of well-known MITM
techniques (e.g., ARP poisoning and DNS pharming attacks) to
re-route all of Alice’s traffic to himself. To avoid being de-
tected or blocked by security mechanisms, once the attacker
completes the one-time MITM attack, he no longer intercepts
the traffic from/to Alice.

We assume that the adversary mounts MITM attacks
with invalid certificates, such as self-signed certificates or
certificates with mismatched domains. These certificates are
expected to raise SSL warnings to users.

If attackers compromise CAs to forge certificates, e.g., se-
curity breaches of Comodo (2011) and DigiNotar (I. VASCO, 2011),
or attack transparent HTTPS proxies using MITM certificates
(Huang et al., 2011; Klein, 2011), no browser warnings will be
raised to users during MITM attacks. Browsers will cache the
malicious resources under the policy for SSL sessions with valid
certificates, which is not the focus of our paper. Instead, we
study browsers’ caching behaviors in HTTPS sessions with
invalid certificates.

3.2. Problem: browser cache poisoning

Based on scenarios of click-through warnings, we classify the
browser cache poisoning attacks into three categories below.

65c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

Suppose the targeted site over HTTPS is an online banking
website A. The goal of attackers is to impersonate A and cause
the victim user’s browser to cache malicious copies of resources.
Same-origin. As Fig. 2 illustrates, when an attacker conducts
the one-time MITM attack between Alice and the target site
A, if Alice clicks through the SSL warning, the attacker can im-
personate as the site A, and replace the page and the targeted
subresources3 with his malicious ones. By setting long-lived
cache headers, the attacker instructs Alice’s browser to store
the malicious copies for a long time. The attacker can substi-
tute the malicious resources for just the essential ones, e.g.,
jquery.js, which may be included in A’s login page. Alterna-
tively, the attacker can utilize HTML5 AppCache to instruct
Alice’s browser to store the malicious page, manifest, and
subresources in the dedicated storage for the banking site for
1 year or longer. Regardless of whether Alice is online or offline,
when she revisits the site A, her browser will directly load the
whole page from AppCache without issuing any requests. Since
the SSL warning occurs on the banking site A, and this attack
only affects the same site, we term such attack same-origin BCP
attack.
Cross-origin. Fig. 3 illustrates the cross-origin attack. Alice is
visiting the site B over HTTP. The attacker first intercepts the
HTTP connection between Alice and the site B, and injects
subresources, say JavaScript, from the site A into B’s pages as
external JavaScript. Later when Alice’s browser sends re-
quests to fetch A’s JavaScript, the attacker intercepts the
connection and substitutes the returned JavaScript with ma-
licious JavaScript that will be cached for a long time. Since
the hijacked banking site uses the certificate forged by the

attacker, Alice’s browser may raise a warning for the fraudu-
lent certificate on the news site. If Alice clicks through the
SSL warning, the malicious JavaScript from the attacker can
poison the site A’s JavaScript in the browser cache. As a result,
the banking site A over HTTPS is compromised when Alice is
visiting the news site B over HTTP, even when no warnings
are shown on the banking site in Alice’s browser. Even worse,
if the poisoned subresource (e.g., jquery.js) is a common script
library shared across several websites, all future sessions with
these sites are compromised.

Since the SSL warning shown on the site B is for the poi-
soned subresource, which is a cross-origin resource loaded in
the banking site A, we term such attack cross-origin BCP attack.
Extension-assisted. The attack targets can be further ampli-
fied by browser extensions. Many desktop browser extensions
inject resources, e.g., scripts and CSS files, into every page. As
Fig. 4 demonstrates, the extension injects JavaScript from its
server C into every page. When the attacker conducts the MITM
attack to impersonate C, if Alice clicks through an SSL warning
for one extension’s injected subresource, the attacker can poison
the subresource. The consequence is more devastating than
previous two scenarios: the poisoned resources will be loaded
into every page on which the extension embeds their corre-
sponding JavaScript from the site C. In addition, if the
extension’s resource is over HTTP, the attacker can directly in-
tercept the HTTP connection and replace it with malicious
resources without causing any warnings in Alice’s browser as
shown in Fig. 5. After that, if Alice clicks through the warning
for mixed contents (Safari and Opera do not have such warn-
ings) on the banking site, the poisoned HTTP resource will be
loaded into the banking site, and the site over HTTPS is no
longer secure. Since this attack is based on poisoning the ex-
tension’s injected scripts, we term it extension-assisted BCP attack.

3 The targeted subresources refer to external (not inline) re-
sources that can alter the document content in the targeted site,
e.g., JavaScript and CSS files, but not static resources, e.g., images.

Fig. 2 – Same-origin browser cache poisoning. The attacker
conducts the one-time MITM attack while Alice visits the
targeted website.

Fig. 3 – Cross-origin browser cache poisoning. While Alice
visits an HTTP site B, the attacker injects subresources
from the target site A and conducts the one-time MITM
attack.

66 c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

4. Browser measurement

The presentations of SSL warnings and the caching policies
vary a lot across browsers. These variances have different
impacts on browser cache poisoning attacks. In this section,
we make a systematic study of BCP attacks on existing desktop
and mobile browsers. We will answer the following questions.

(1) What information is displayed in the warning, e.g., the
target site’s URL and certificate?

(2) What are the caching policies for resources over a broken
HTTPS session in different browsers?

(3) How many browsers, users, and websites are suscep-
tible to browser cache poisoning attacks?

We measure BCP attacks on five mainstream desktop brows-
ers and 16 popular mobile browsers. These studies show that
all evaluated browsers are susceptible to BCP attacks.

4.1. Experimentation overview

We set up an Apache server as the attacker’s server, host the
malicious resources used in BCP attacks, and use Cache-
Control:public, max-age = 31,536,000 in the resources’ response
headers to instruct browsers to cache them for 1 year. We utilize
mitmproxy (M. dev team, 2014) to intercept the traffic from/to
the victim, replace the target site’s resources with malicious
ones in the attacker’s server, and send the substituted re-
sponses to the victim’s browser. To forge certificates for target
sites, we use OpenSSL (2015) to create self-signed SSL certifi-
cates for the target domain.

For the target site, because online banking websites contain
users’ confidential information, e.g., credit card numbers, these
sites are often targeted by attackers.We conduct our experiment

on one real-world online banking website. To anonymize the
site, we replace the site’s name with “OnlineBankingA” and
shade the site’s logo in figures throughout the paper (e.g., in
Figs. 8, A1 and A2).4

We mount BCP attacks on popular browsers (e.g., IE, Chrome,
Firefox, Safari, Opera, Maxthon, UC, etc.) on various plat-
forms (e.g., Mac OS X 10.9.3, Linux 12.04, Windows 7, Android
4.4.3, iOS 6, and Windows Phone 8). As Table 1 shows, these
browsers cover over 99% desktop browser users, and the mobile
browsers have more than one billion downloads. We describe
the details of our evaluation below.

4.2. The inconsistency of SSL warnings

The SSL/TLS protocol is essential to establish HTTPS connec-
tions between servers and browsers.5 In an MITM attack against
HTTPS, the attacker’s certificate is not trusted by the victim’s
browser, which can be caused by certificate with wrong domain
name, self-signed certificates, and certificate signed by untrusted
CAs. Browsers usually prompt with SSL warnings to ask the
victim whether to trust the certificate. This is the last defense
of protecting HTTPS connections from MITM attacks. Once the
user clicks through the warning, the browser will trust the at-
tacker’s certificate, and the attacker can impersonate as the
targeted site’s server.

However, as per our evaluation, browsers behave differ-
ently in when and how to show such warnings. We gather SSL
warnings and address bar warnings on various browsers (shown
in Figs. A1 and A2 in the Appendix), and discuss the variances

4 We denote the targeted site’s URL as https://OnlineBankingA/
US/JSO/signon/LocaleUsernameSignon.do?locale=en_US, and select
the site’s essential subresource https://OnlineBankingA/JFP/js/
jquery/jquery-1.7.2.js for poisoning.

5 We use SSL to refer to both TLS and SSL in this paper.

Fig. 4 – Extension-assisted browser cache poisoning.
Extensions inject resources for HTTPS sites.

Fig. 5 – Extension-assisted browser cache poisoning.
Extensions inject resources for HTTP sites.

67c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

https://OnlineBankingA/US/JSO/signon/LocaleUsernameSignon.do?locale=en_US
https://OnlineBankingA/US/JSO/signon/LocaleUsernameSignon.do?locale=en_US
https://OnlineBankingA/JFP/js/jquery/jquery-1.7.2.js
https://OnlineBankingA/JFP/js/jquery/jquery-1.7.2.js

in information displayed for resources loaded over broken
HTTPS sessions.
No SSL warnings. CM browser 5.0.22 does not check the va-
lidity of certificates, and never shows SSL warnings for
fraudulent certificates. It always displays the “Green Shield”
in the address bar for all HTTPS connections, regardless of the

invalid server-side certificate.6 This browser has more than ten
million users on Google Play.
Overlaid SSL warnings. The attacker can utilize clickjacking
(Huang et al., 2012) or tapjacking (Niemietz and Schwenk, 2012)
to overlay and camouflage SSL warnings in an iframe, to further
lure the victim to click through the warning. Fig. 6 demon-
strates the SSL warning inside an iframe can be overlapped and
hidden using the clickjacking technique. We have successfully
used this technique on Firefox 3.6, IE 8, IE 10 for Windows Phone
and other old version browsers.
Incomplete SSL warnings. As Table 1 and Fig. A2 show, the ma-
jority of current browsers show SSL warnings for broken HTTPS
sessions. For desktop browsers, whereas Firefox, Chrome and
IE show in-page SSL warnings for such sites, Safari and Opera
display pop-up warnings. For mobile browsers, Firefox, Chrome,
Opera, IE and UC display in-page warnings, while other ten
browsers (i.e., Android Default Browsers, Safari, Baidu, Maxthon,
Next, Web Explorer Browser, Web Browser, Javelin, Dolphin and
Boat) alert users with pop-up SSL warnings.

All warnings have the same intended goal, i.e., to alert users
that the server’s certificate is not trusted, but they have dif-
ferent presentations, e.g., various messages and appearances,
as shown in Figs. 7 and 8. We demonstrate the variances of

6 The vendor adds SSL warnings in the latest version, but CM is
still affected by BCP attacks when the user ignores the warning.

Fig. 6 – The SSL warning inside iframe can be visually
overlaid using clickjacking techniques in Firefox 3.6.

Table 1 – SSL warnings, address bar warnings and default caching policies in mainstream browsers.

Market share I II III IV V VI VII VIII

Desktop browsers
Firefox (31.0) (Linux, Windows and OS X) 15.54% (A. Technica, 2015) ✓ ✓ ✓ – ✓ ✓ – –
Chrome (36.0.1985.125) (Linux, Windows and OS X) 19.34% ✓ ✓ ✓ – ✓ ✓ ✓ –
Safari (7.0.4) (Windows and OS X) 5.28% ✓ ✓ ✓ – ✓ ✓ ✓

Opera (22.0.1471.70) (Linux, Windows and OS X) 1.05% ✓ ✓ ✓ – ✓ ✓ ✓ –
IE (10.0.9200.16540) (Windows) 58.38% ✓ ✓ – – ✓ ✓ – –

Mobile browsers Number of downloads
Firefox (31.0) (Android) 50,000,000 ✓ ✓ ✓ – ✓ ✓ – –
Chrome (36.0.1985.125) (Android and iOS) 500,000,000 ✓ ✓ ✓ – ✓ ✓ ✓ –
Safari (5.0) (iOS) 800,000,000 (Ingraham, 2014) ✓ ✓ ✓ – ✓ ✓ ✓ –
Opera (22.0.1485.78487) (Android and iOS) 50,000,000 ✓ ✓ ✓ – ✓ ✓ ✓ –
IE (10) (Windows Phone) 30,000,000 (A. Research, 2014) ✓ – ✓ – ✓ ✓ – –
Android default browser (4.4.3) (Android) 1,000,000,000 (N. Y. Post, 2014) ✓ ✓ – – ✓ ✓ – –
Baidu (4.0.0.4) (Android) 10,000,000 ✓ – – – – ✓ – –
Maxthon (4.2.6.2000) (Android) 5,000,000 ✓ – – – – ✓ – –
Next (1.16) (Android) 5,000,000 ✓ – – – – ✓ – –
CM (5.0.22) (Android) 10,000,000 – – – – – – – –
Javelin (3.1.1) (Android) 100,000 ✓ – – – – – – –
Web Explorer (2.0.6) (Android) 1,000,000 ✓ – – – – – – –
Web Browser (1.2) (Android) 100,000 ✓ – – – – – – –
Dolphin (11.1.6) (Android) 50,000,000 ✓ ✓ – – – ✓ – –
Boat (7.7) (Android) 5,000,000 ✓ ✓ – – – ✓ – –
UC (9.8.0) (Android) 50,000,000 ✓ ✓ ✓ – – – – –

✓: Yes; –: No.
I : Show pop-up/in-page SSL warnings for sites with invalid certificates.
II: Show address bar warnings for sites with invalid certificates.
III: Block cross-origin subresources with invalid certificates by default.
IV: Show address bar warnings for cross-origin subresources with fraudulent certificates.
V: Display the target site’s URL in the SSL warning.
VI: Display the fraudulent certificate’s content in the SSL warning.
VII: Not cache resources over broken HTTPS in web cache.
VIII: Not cache resources over broken HTTPS in AppCache.

68 c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

the presented information below, and discuss their potential
implications.

1) Different default actions for hijacked subresources. For
cross-origin subresources with invalid certificates, Firefox, Safari,
Chrome, Opera, IE for Windows Phone and UC directly block
these resources from being loaded into the current page without
showing any warnings. Other browsers, e.g., Android Default
Browser, Baidu, Maxthon, Next, CM, Javelin, Dolphin, Boat, Web
Explorer and Web Browser, prompt with SSL warnings shown
in Fig. A2 to caution users. For cross-origin BCP attacks, the at-
tacker can inject subresource from the target site into any site
over HTTP. Since the warning appears on the HTTP site, e.g.,
news site, the user may be inclined to ignore it and continue
browsing the site over HTTP. Once the subresource is hi-
jacked by BCP attacks and cached in browsers, all the user’s
future HTTPS sessions with the target site are compromised.

2) Missing URLs in the warning. As Table 1 shows, except
Firefox, Chrome, Safari, Opera, IE (desktop version and mobile
version) and Android Default Browser, other ten mobile brows-
ers do not display the target site’s URL in the warning. For Baidu,
Maxthon, Next, Dolphin, and Boat browsers, after clicking the
“View certificate” and “View page info” buttons, the current
page’s URL (not the hijacked subresource’s URL) will be shown.
Since the target site’s URL is missing in the warning, when
under cross-origin or extension-assisted BCP attacks, the user
may tend to notice that the warning is not for the current HTTP
site and may be inclined to click through it.

3) No warnings for sites in the address bar. As Table 1 shows,
when the user clicks through an SSL warning, all desktop brows-
ers display warnings, e.g., “Broken Lock” in Chrome, in the
address bar for sites with invalid certificates. For mobile brows-
ers, Baidu, Maxthon, Next, CM, Javelin, Web Explorer Browser,
IE for windows phone and Web Browser do not display warn-
ings in the address bar for these sites as shown in Fig. A1n–u,
in contrast to other browsers in Fig. A1a–m. For example, CM
browser always displays “Green Shield” in the address bar as

shown in Fig. A1q. In this case, once the target site is under
the same-origin BCP attack on these browsers, these browsers
will always load the substituted one without any warnings in
the address bar.

4) Missing contents of invalid certificates. When HTTPS ses-
sions are intercepted, the certificates’ contents in the SSL
warnings can help users identify whether the certificates should
be trusted or not. However, several mobile browsers, e.g., Javelin,
Web Explorer, Web Browser, and UC, do not display the cer-
tificate’s content.

Such inconsistency among today’s web browsers in warning
users of SSL errors may result in clicking through the warn-
ings. Especially, the improper warning presentations on certain
mobile browsers, e.g., no warnings in the address bar and
missing the target site’s URL, make users more susceptible to
BCP attacks. Even worse, when SSL errors are ignored by users,
browsers’ policies for caching resources are heavily browser-
specific. In Section 4.3, we discuss the incoherence of browser
policies for broken HTTPS connections.

4.3. Incoherence of browser caching policies

Though SSL warnings are inconsistent among browsers and
often do not provide enough information to caution users away
from target sites, if these browsers employ proper caching poli-
cies, they can still limit the damage of BCP attacks to one
session. However, our evaluation shows that caching policies
for broken HTTPS connections are not consistent across brows-
ers. For HTTPS connections with valid certificates, all browsers
will follow the header’s directives and cache the resources prop-
erly. For broken HTTPS connections after clicking through SSL
warnings, different browsers deploy different caching policies.
Caching resources over broken HTTPS in the web cache. As
Table 1 shows, only Chrome, Safari, and Opera do not cache
resources over broken HTTPS in the web cache, but all other
browsers cache the resources. Since the web cache is shared
across all sites, if common JavaScript libraries in the web cache
are poisoned by BCP attacks, all the sites that contain the same
libraries are affected.
Caching resources over broken HTTPS in HTML5 AppCache.
Table 1 demonstrates that only Safari does not cache re-
sources over broken HTTPS in AppCache, but other desktop
browsers and mobile browsers cache these resources.
No pop-up/in-page warnings for loading resources over broken
HTTPS from browser cache. From our evaluation, we find that
no browsers show pop-up/in-page warnings for loading re-
sources over broken HTTPS from either the web cache or
AppCache.

We have reported the incoherence of browser caching poli-
cies to the related browser vendors. Google acknowledged these
findings with a bounty and is deploying a fix in Chrome sug-
gested by us, as we will propose in Section 6.

4.4. Susceptibility of browsers

Same-origin. As Table 1 demonstrates, all browsers cache re-
sources over broken HTTPS in either the web cache or the
HTML5 AppCache, except Safari on the desktop platform. For
these browsers, once the victim clicks through one SSL warning

Fig. 7 – The SSL warning in Javelin displays incomplete
information, e.g., missing the target site’s URL.

Fig. 8 – The SSL warning in Safari shows the target site’s
URL and the certificate.

69c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

on the targeted site, the browser will cache the substituted re-
sources from the attacker, and the site is affected by same-
origin BCP attacks.
Cross-origin. Table 1 shows that only Chrome, Safari, and Opera
do not utilize the web cache to cache resources over broken
HTTPS. Furthermore, Firefox, Safari, Chrome, Opera, IE for
Windows Phone and UC directly block these fraudulent re-
sources from being loaded into the current page. Thus all other
browsers are affected by cross-origin BCP attacks. Because the
web cache is shared across different sites, it can be used by
such attacks. Once the victim clicks through the warning for
the target site’s subresource on any HTTP site, the subresources
can be replaced by the BCP attacker and cached in the vic-
tim’s browser for a long time. Thus the warning on other site
can affect the target site’s security.
Extension-assisted. We observe that many extensions inject
resources, e.g., JavaScript, into every page, for example, Free
Smileys & Emoticons (1.8M users), Lightning Newtab (4.3M users)
on Chrome, and WindowShopper (32,000 users) on Firefox. On
Firefox, Chrome, Safari, and Opera, we develop a tool to au-
tomatically download extensions and analyze their injections
into pages. We show part of our results in Table 2. We mount
extension-assisted BCP attacks on these extensions in four
browsers and summarize the results in Table 3. Though Table 1
shows that only Firefox caches the injected JavaScript files over
broken HTTPS, all these browsers allow extensions to inject
HTTP scripts into HTTPS sites and store the malicious HTTP
resources in the web cache. Safari and Opera do not display
warnings for such mixed contents, and they will directly load
the extension’s subresources over HTTP. Without the last line
of defense in displaying the warning, the sites that contain
mixed contents can also be easily attacked. Once the extension’s
subresources are poisoned by BCP attacks, all subsequently

opened pages in Safari and Opera will be compromised. On the
other hand, Firefox and Chrome do not allow HTTPS pages to
load subresources over HTTP by default, but users can over-
ride the default by clicking through a warning button for mixed
content as Fig. 9 shows. Once the victim clicks through the
warning, these two browsers will load the subresources over
HTTP, which can be affected by BCP attacks.

In conclusion, all the evaluated browsers are susceptible to
at least one category of BCP attacks. For desktop browsers, Safari
is only affected by extension-assisted BCP attacks, Chrome,
Firefox and Opera are vulnerable to same-origin and extension-
assisted BCP attacks, while IE is affected by all the three series
of attacks. Since all the evaluated mobile browsers do not
support extensions/add-ons, they are not susceptible to
extension-assisted BCP attacks. For mobile browsers, Firefox,
Chrome, Safari, Opera, IE, and UC are only vulnerable to same-
origin BCP attacks, and the rest of browsers are affected by both
same-origin and cross-origin attacks.

The desktop browsers cover at least 99% of desktop browser
users and the mobile browsers have been downloaded over
one billion times by mobile users. We conducted our experi-
ments on the browsers with recent versions, and we believe
that the old version browsers have the same problems, if not
worse.
Susceptible browser-like applications. Mobile platforms (like
Android and iOS) provide APIs for developers to embed in-
app browsers (e.g., WebView in Android) into their applications.
Therefore, it is convenient for users to visit websites inside these
browser-like applications. However, since mobile developers are
usually not experts in browsers, they may not configure SSL
and cache policies for their applications properly, which exposes
applications vulnerable to BCP attacks. We conducted BCP
attacks on 200 Android applications (from Jin’s dataset (Jin et al.,
2014)) downloaded from Google Play. We found that 26 of them

Table 2 – Extensions/add-ons that inject HTTP/HTTPS scripts into every page on Chrome.

Name I II Name I II Name I II

Free Smileys & Emoticons 1,598,606 1 friGate-unlock sites 265,191 2 Iminent 2,357,926 1
Lightning Newtab 4,397,781 1 Search Switch 307,889 9 Search All 305,701 9
Slick Savings 470,422 5 Everplex Dark 19,676 8 Video download helper 467,430 9
3Dnator 62,861 1 Pacman 82,654 5 Mini Clock 8,243 9
uTorrent for Chrome 89,564 4 PiccShare 94,693 3 Album Downloader 64,415 10
EXIF Viewer 39,674 1 Imageshack-Clickberry 23,020 1 Dailymotion downloader 15,957 3
ShopperPro 305,386 11 Printer button 7164 7 Shopping Helper 575,752 4

I: Number of users (data collected in August, 2014).
II: Number of injected scripts.

Table 3 – Caching and mixed content policies for
extensions’ injected resources on Chrome, Firefox,
Safari and Opera.

I II

Firefox (Linux, Windows and OS X) ✓ ✓

Chrome (Linux, Windows and OS X) ✓ ✓

Safari (OS X and Windows) – ✓

Opera (Linux, Windows and OS X) ✓ ✓

I: Cache extensions’ injected resources over HTTP or broken HTTPS.
II: Allow extensions to inject HTTP resources into sites over HTTPS.
✓: Yes; –: No.

(a) The warning for mixed content
in Chrome.

(b) The warning for mixed content
in Firefox.

Fig. 9 – The warnings for mixed content in Chrome 36 and
Firefox 31.

70 c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

are vulnerable to same-origin and cross-origin attacks and do
not display SSL warnings when under attack.7

Susceptible websites in Alexa Top 100 and Top 1,000,000. Web-
sites cannot completely thwart BCP attacks by themselves, but
by enabling proper settings, e.g., HSTS (Hodges et al., 2012), they
can partially mitigate such attacks. After our investigation on
Alexa Top 100 websites, we find that 51 sites are served over
HTTPS, 22 sites set cache headers properly (e.g., no-cache), two
sites (i.e., apple.com and bing.com) do not contain cross-
origin resources, six sites set CSP headers8 and five sites9 enable
HSTS headers.

Furthermore, we send HTTPS requests to Alexa Top one
million sites to fetch their homepages. We received 31,377 re-
sponses. By analyzing the response headers of 31,377 HTTPS
websites, we find that 510 (1.63%) sites enforce HSTS headers,
375 (1.20%) sites set cache-control headers, and only 45 (0.14%)
sites enable CSP. The majority of HTTPS websites do not have
protection against BCP attacks.

5. Insufficiency of existing solutions

One straightforward defense for browsers is not to cache re-
sources over broken HTTPS. Since the hijacked resources over
HTTPS cannot be cached in browsers, this solution can prevent
browser cache poisoning attacks over HTTPS. As Table 1 shows,
Chrome, Opera, and Safari have already implemented this

caching policy for the web cache, but only Safari deploys it for
HTML5 AppCache. However, the majority of mobile browsers,
e.g., Android Default Browser, Firefox for Android and Maxthon,
do not apply this policy and are susceptible to both kinds of
poisoned caches.

Various existing defenses against attacks via HTTPS/
browser cache can help defend against BCP attacks. However,
they are not sufficient. As Table 4 summarizes, CSP (W3C, 2015a),
Channel ID (Balfanz and Hamilton, 2013), SISCA (Karapanos and
Capkun, 2014), DANE (Hoffman and Schlyter, 2012), CAA
(Hallam-Baker and Stradling, 2013), and private browsing mode
(Aggarwal et al., 2010) cannot thwart any type of BCP attacks;
HSTS (Hodges et al., 2012), HPKP (Evans and Palmer, 2011), and
DVCert (Dacosta et al., 2012) can mitigate same-origin BCP
attacks; Web Cryptography API (Dahl and Sleevi, 2013),
Subresource Integrity (Braun et al., 2014), CSP 2 (W3C, 2015b)
and randomization of URLs (Jakobsson and Stamm, 2006)
prevent cross-origin BCP attacks; segregating browser cache
(Jackson et al., 2006) protects users from cross-origin and
extension-assisted BCP attacks. Therefore, none of these tech-
niques provide comprehensive protection against BCP attacks.
We describe details below.

5.1. Defenses against MITM attacks

Strict transport security (HSTS), public key pinning (HPKP) and
direct validation of certificates (DVCert). HSTS (Hodges et al.,
2012) is the successor of ForceHTTPS (Jackson and Barth, 2008),
which is proposed to mitigate SSL stripping attacks.10 It pro-
vides an HTTP response header for a website to force browsers
to make SSL connections mandatory for all subresources on
this site. Once HSTS is set in the HTTP header, none of the
HSTS-compliant browsers give users the option to ignore SSL
certificate warnings. However, for HSTS, browsers must first

7 The vulnerable applications are: edu.jhu.idcs.mobile.jcard,
eu.weblore.bridgetag.severn, hideshi.y.exoticA, iazresources.com
.datoiraziz, ie.bizapps.onefitness, in.followon.sportentertain,
info.yamada_ken1.letswalk, jp.co.cyberagent.girlsup, kagoshima
.ayanomahoo, miyazaki.ayanomahoo, mobi.horseracingtips
.app, net.buzz_app.buzz, net.copapps.erd, okinawa.team
.faith.apps, org.jpn.eqm.eq4m, org.wordproductions.abqhaps, org
.wordproductions.letitrise, org.wordproductions.prayerforrefreshing,
py.com.documenta.contimovil, se.kristnaskolanoasen.kskolanoasen,
take.soft.heisei, take.soft.holiday, take.soft.seirekiwareki,
tw.anddev.aplurk, your.app.name.yamauchi, and your.dash.umedu.

8 plus.google.com, facebook.com, twitter.com, mail.yandex.ru,
pinterest.com and e.mail.ru.

9 facebook.com, twitter.com, dropbox.com, paypal.com and
alipay.com.

10 In SSL stripping (Marchesini et al., 2005), the MITM attacker in-
tercepts all the traffic from/to the victim. When the victim is being
redirected to an HTTPS site from an HTTP site, the attacker inter-
cepts the redirect, acts as the other end of the HTTPS session with
the site, and sends the unencrypted version of the content back
to the victim. In this way, the attacker issues all the requests over
the HTTPS connection with site on the behalf of the victim.

Table 4 – Various techniques for mitigating browser cache poisoning attacks.

I II III

HSTS (Hodges et al., 2012)/HPKP (Evans and Palmer, 2011)/DVCert (Dacosta et al., 2012) ✓ – –
Channel ID (Balfanz and Hamilton, 2013)/SISCA (Karapanos and Capkun, 2014) – – –
DANE (Hoffman and Schlyter, 2012)/CAA (Hallam-Baker and Stradling, 2013) – – –
CSP (W3C, 2015a) – – –
Web Cryptography (Dahl and Sleevi, 2013)/Subresource Integrity (Braun et al., 2014)/CSP 2 (W3C, 2015b) – ✓ –
Private Browsing Mode (Aggarwal et al., 2010) – – –
Randomization of Resources’ URLs (Jakobsson and Stamm, 2006) – ✓ –
Segregating Browser Cache (Jackson et al., 2006) – ✓ ✓

I: Same-origin browser cache poisoning attacks.
II: Cross-origin browser cache poisoning attacks.
III: Extension-assisted browser cache poisoning attacks.
✓: Mitigate; –: Not mitigate.

71c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

connect to the legitimate websites securely to fetch the
authorized certificates before connecting to untrusted net-
works (Huang et al., 2014). Thus if the BCP attack occurs before
the victim connects to the legitimate site, the attacker can still
poison the target site’s resources. After testing four sites that
enable HSTS headers on Firefox, i.e., facebook.com, github.com,
paypal.com and alipay.com, we find that the HSTS headers can
be stripped by the attacker if it is the user’s first visit, and after
that the sites are not protected by HSTS.

Public Key Pinning (HPKP) (Evans and Palmer, 2011) allows
websites to specify their own public keys with an HTTP header,
and instructs browsers not to accept any certificates with
unknown public keys. Without connecting to the legitimate
websites securely for the first time, some browsers, e.g., Chrome
and Firefox, pre-load the public keys for well-known web-
sites, e.g., google.com, to deploy HPKP or HSTS (G. Project,
2015; Keeler, 2012). While current browsers only pre-load public
keys of selected sites, it is impractical for them to pre-load
the public keys of all sites over HTTPS. Both HSTS and HPKP
instruct browsers to cease connections with servers over broken
HTTPS to protect these sites from MITM attacks. However, if
the target site contains cross-origin subresources that are
not protected by HSTS/HPKP, these resources can be poi-
soned by cross-origin BCP attacks over broken HTTPS. We
conduct experiments on two sites that use HSTS headers
(i.e., github.com and twitter.com), where both sites contain
the URL https://www.google-analytics.com/analytics.js without
HSTS headers. We find that after poisoning analytics.js, when
visiting these two sites over valid HTTPS, browsers will load
poisoned scripts into these two sites without any warning.
For extension-assisted BCP attacks, HSTS/HPKP cannot prevent
browsers from loading the hijacked extensions’ scripts over
HTTP/HTTPS into the target site. Meanwhile, currently the
majority of mobile browsers, e.g., IE 10 (Windows Phone),
Android Default Browser, Baidu, Maxthon, Next, CM, Javelin,
Web Explorer, Web Browser, Dolphin, Boat, and UC, do not
support HSTS/HPKP.

DVCert (Dacosta et al., 2012) allows web applications to
directly vouch for the authenticity of its certificates. Based on
a modified PAK (Boyko et al., 2000; MacKenzie, 2002) protocol,
the browser learns the adequate information to locally verify
all the certificates that will be used during a session within
the application.This solution can help browsers to detect MITM
attacks on the sessions for the deployed site. Therefore, it miti-
gates the same-origin BCP attacks. However, if the site contains
cross-origin subresources that are not protected by DVCert,
these resources can still be poisoned by cross-origin BCP attacks.
Therefore, DVCert cannot mitigate cross-origin/extension-
assisted BCP attacks. Meanwhile, DVCert can only protect sites
where the user has an account and a shared secret, and cannot
be used to protect the first connection to a website like HSTS.
Currently, this solution only has a proof-of-concept exten-
sion for Firefox.
Channel ID and SISCA. Channel ID (Balfanz and Hamilton,
2013) is a TLS extension, which was originally proposed as
Origin-Bound Certificates (OBCs) (Dietz et al., 2012). Channel
ID enables browsers to generate self-signed certificate to
conduct TLS client-side authentication, and further prevent
MITM attackers to impersonate as the victims’ browsers.
Server Invariance with Strong Client Authentication (SISCA)

(Karapanos and Capkun, 2014) combines Channel-ID-based
client authentication and server invariance to protect against
MITM attackers who impersonate the user to the server.
However, the attackers discussed in this work impersonate
the server to the user, and therefore Channel ID/SISCA do not
prevent BCP attacks.

In particular, BCP attacks can compromise SISCA’s guar-
antees. To prevent resource caching poisoning, SISCA sets the
ETags header to instruct browsers to check the integrity of the
cached resource, and sets the If-Non-Match header to verify that
the local version matches the latest version on the server. Nev-
ertheless, these settings are in response headers, which can
be easily replaced by the BCP attacker when poisoning the target
resources by setting long-lived cache headers. The attacker can
also poison cross-origin subresources or extension’s injected
resources in the target site. Therefore, when the user visits the
target site, the browser will load these malicious cached re-
sources rather than the original ones. The poisoned resources,
e.g., JavaScript, have unrestricted access over the credentials
belonging to the site on behalf of the user. Thus SISCA cannot
mitigate BCP attacks.
DANE and CAA. The Certification Authority Authorization (CAA)
DNS Resource Record (Hallam-Baker and Stradling, 2013) allows
a DNS domain name holder “to specify Certification Authori-
ties (CAs) authorized to issue certificates for that domain.” DNS-
based Authentication of Named Entities (DANE) (Hoffman and
Schlyter, 2012) enables the administrators of domain names
to sign SSL certificates for websites on their domains. Never-
theless, these approaches are based on DNS Security Extensions
(DNSSEC), which are not widely deployed on the Internet. Fur-
thermore, these solutions do not impel browsers not to cache
resources over broken HTTPS, thus they cannot mitigate BCP
attacks.

5.2. Content restriction and document integrity

Content security policy (CSP). CSP (W3C, 2015a) provides HTTP
headers for a website to declare approved resources (e.g.,
JavaScript, CSS, frames, etc.), which are whitelisted to be loaded
on the page in browsers. Other resources that violate the policy
will be blocked and reported to the site. CSP helps detect and
mitigate cross site scripting (XSS) and some subresource-
injection attacks. However, CSP is a parser-level defense, and
it does not check the integrity of a resource. With preserving
the same URLs, cross-origin BCP attacks replace approved
subresources with malicious ones, thus CSP cannot detect the
differences and mitigate such attacks. Furthermore, same-
origin BCP attacks can hijack the whole site and substitute the
forgery site without CSP headers for the original one. In ad-
dition, browser extensions are exempt to CSP, and can inject
scripts into websites regardless of the origins of the scripts
(Sterne and Barth, 2012). Thus CSP does not interfere with
extension-assisted BCP attacks. Summarizing, CSP does not
prevent BCP attacks.
Web cryptography API and subresource integrity and CSP2.
Web Cryptography API (Dahl and Sleevi, 2013) provides a
JavaScript API for performing basic cryptographic operations
in web applications, for example, encryption, decryption,
hashing, and signature generation. Subresource Integrity (Braun

72 c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

https://www.google-analytics.com/analytics.js

et al., 2014) introduces a mechanism for browsers to
verifythatsubresources in web applications have been deliv-
ered without unexpected manipulation. Subresource Integrity
(Braun et al., 2014) extends several HTML elements with an in-
tegrity attribute that contains a cryptographic hash of the
representation of the resource below.

Similarly, Content Security Policy Level 2 (CSP 2) (W3C,
2015b) provides a hash attribute for developers to whitelist a
particular inline script. Browsers will verify the integrity of
the script with the hash attribute before executing it. Web
Cryptography API, Subresource Integrity and CSP 2 all provide
the functionality for browsers to check data integrity for
subresources. Thus browsers can realize that the poisoned
subresources are not the same ones in the original site, which
mitigates cross-origin BCP attacks. However, for same-origin
BCP attacks, the attacker can replace the subresource, re-
compute the hash value and set the new one in the target
site. For extension-assisted BCP attacks, the injected scripts
from extensions are beyond the control of these two tech-
niques. Thus Web Cryptography API, Subresource Integrity
and CSP 2 cannot defeat these two attacks. These three tech-
niques are still in W3C working drafts, which are not supported
by any browser at this moment.

5.3. Defenses via browser cache

Private browsing mode. Private browsing modes, such as Private
Browsing in Safari/Firefox and Incognito Mode in Chrome,
prevent browsers from permanently storing any cookies, his-
tories, caches or other site related states. However, in the
private browsing mode, browsers still cache resources of dif-
ferent websites (Aggarwal et al., 2010). Browsers only clear
the cached resources after closing windows by users. Thus
when browsers are in the private browsing mode before closing,
they are still susceptible to BCP attacks. For Chrome and
Opera, they disable extensions in private browsing mode by
default, thus they partially prevent extension-assisted BCP
attacks. Meanwhile, comparing to desktop browsers, many
mobile browsers, e.g., CM, UC and Dolphin, do not support
the private browsing mode.
Randomization of resources’ URLs. Randomization of re-
sources’ URLs instructs client-side browsers not to cache these
resources by adding a unique random string in each re-
source’s URL: www.google-analytics.com/analytics.js?19991.
Thus when a user visits the target site, the site includes a
different URL for the same resource, and the user’s browser
always fetches the latest one from the server instead of loading
from cache. Jakobsson and Stamm neutralize attacks via
browser cache by means of URL personalization with this
idea (Jakobsson and Stamm, 2006). As users cannot predict
all the URLs, the target site will provide at least one static

URL for a starting page. Thus users can visit the site by
typing the URL in the address bar or from search results on
search engines. Since the attacker cannot predict URLs of the
target site’s subresources, cross-origin cannot work. Never-
theless, in same-origin BCP attacks, the attacker can substitute
a malicious page for the target site’s starting page to compro-
mise the future sessions. Meanwhile, the extension’s hijacked
resources are not obfuscated and still cached in the victim’s
browser. Therefore, this technique does not defeat the same-
origin and extension-assisted attack vectors, but protects against
cross-origin attacks.
Segregating browser cache. Jackson et al. proposed to deploy
the Same-Origin Policy on browser cache to prevent websites
from loading cached resources from other sites (Jackson et al.,
2006). This approach prevents hijacked resources from being
shared across different sites, and every site can only load its
own cached resources. This technique thwarts cross-origin
and extension-assisted BCP attacks, but not same-origin BCP
attacks. In addition, this defense introduces significant per-
formance overhead (Jia et al., 2014).

6. Our defense techniques

In this section, we first discuss guidelines for users and browser
vendors to defeat BCP attacks. However, user faults and browser
implementation errors are the main reasons for BCP attacks.
We then propose defense techniques for web developers to
mitigate cross-origin BCP attacks with minor performance
overhead without additional cooperation from browsers and
users.

6.1. Guidelines for users

Users should not click through SSL warnings on any site in
normal browsing mode. As a precaution, they should also clear
browser cache, i.e., the web cache and HTML5 AppCache, before
visiting a site processing sensitive information, especially after
an SSL warning is clicked.

After investigating the settings of 21 browsers, we find that
Javelin, Web Explorer and Web Browser do not provide the
option for users to clear cache. Safari (mobile and desktop
version), IE (Windows Phone version), Android Default Browser
and Maxthon have the “Clear cache” button as shown in Fig. 10a,
but the setting does not specify web cache and AppCache.
The other browsers, e.g., Chrome and Firefox, support
various options for users to clear browsing data as shown in
Fig. 10b. However, clearing cache takes several steps. For
example, on Chrome (Android version), users need to click
“Setting”, “Privacy”, and “Clear browsing data” to trigger the
clearing.

Even if users follow the setting to clear cache, Baidu, Next,
Javelin, Web Explorer, Web Browser and CM do not clear
AppCache. Once an attacker poisons the targeted resources in
AppCache, these six browsers will cache the malicious re-
sources until the user uninstalls them.Therefore, never clicking
through any SSL warnings is the only proper way for users to
protect themselves from BCP attacks.

73c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

http://www.google-analytics.com/analytics.js?19991

6.2. Guidelines for browser vendors

From the perspective of a browser vendor, to completely defeat
BCP attacks, there are two requirements that suffice: (1) Not
caching resources over broken HTTPS in either web cache or
AppCache; (2) preventing HTTPS sites from loading resources
over HTTP by default.

The first requirement protects web users from same-
origin, cross-origin, and extension-assisted BCP attacks over
HTTPS, and the second one prevents the extension-assisted
attack vector over HTTP. As Table 1 depicts, only Safari (desktop
version) meets the first requirement, but other browsers es-
pecially mobile browsers do not provide such protection. For
Chrome, after receiving our report, Google has confirmed the
vulnerability in AppCache and is deploying a fix to meet the
first requirement. For the second policy, Chrome and Firefox
(desktop version) block mixed contents by default with warn-
ings as shown in Fig. 9, but other browsers do not have such
policy. By implementing these two policies, browsers can protect
users from BCP attacks without the server-side modification
and the assistance from users.

6.3. Defense techniques for website developers

The inconsistency of SSL warnings and the incoherence of
caching policies increase the vulnerability to BCP attacks. Web-
sites cannot impel all browsers to implement proper protections
or force all users to use the upgraded browsers. Thus web-
sites need to protect users from BCP attacks even without
cooperation of users and browser vendors.

To defeat extension-assisted BCP attacks without the support
from browsers and users is difficult. However, most desktop
browser extensions do not inject scripts into every page, and
all mobile browsers do not support extensions, which allevi-
ates such threats. Users may be more inclined to click through
warnings on the sites with which users do not exchange any
sensitive information, e.g., news and blog sites, than on the
sensitive sites, e.g., online banking sites. The cross-origin BCP
attack makes it a powerful vector for exploits. Thus the cross-
origin attack vector is the most deluding vector and can affect
most users comparing to the other two vectors.

As discussed in Section 5, five defense techniques – Web
Cryptography API, Subresource Integrity, CSP 2, segregating
browser cache, and randomization of all resources’ URLs –
can mitigate cross-origin BCP attacks. However, the first four
defenses currently are not deployed in browsers, requiring
browser vendors to modify source code and add these new
features. The last technique impels browsers not to cache
any resources at the expense of increased performance
overhead.

We propose a balanced approach to mitigate cross-origin
BCP attacks with minor performance overhead (<5%), which
works on all commodity browsers without browser modification.
Approach overview. Our main goal is to prevent the target site
from loading the poisoned JavaScript subresources in the user’s
browser cache. As Fig. 11 illustrates, in our approach, the target
site checks the integrity of all cached JavaScript subresources
before loading them into the page. Therefore, only fresh and
unpoisoned subresources can be loaded into the target site’s
page.

For any subresource B included in the target site’s page, we
utilize external scripts with a random string in the URL to follow

(a) “Clear cache” setting in
Android Default Browser.

(b) “Clear browsing data” setting in
Chrome for Android.

Fig. 10 – “Clear cache” setting in Android Default Browsers
does not specify the web cache and HTML5 AppCache.
“Clear browsing data” setting in Chrome provides various
options for users to clear browsing data.

Browser

Web Application

Parser
Network
Module

Cache

Fig. 11 – Illustration of the defense we propose, which
ensures only fresh and unpoisoned subresources can be
loaded into the targeted site’s page.

74 c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

the procedure in Algorithm 1. By sending two XMLHttpRequests
for B, the scripts check the caching status of B by timing
techniques. If B is not cached, the scripts append B with the
original URL into the page; otherwise, the scripts check the in-
tegrity of B. If B passes the check, which indicates B is not
poisoned, the scripts append B with the original URL into the
page; otherwise, B is poisoned, and thus the scripts append B
with B’s URL and a random string into the page, which trig-
gers the browser to fetch the latest version of B from the server.
Since the browser never loads the poisoned subresources into
the target site’s page, this approach mitigates cross-origin BCP
attacks.
Implementation. Suppose the target web application is a website
A with the domain a.com over HTTPS. For infrequently changed
resources, e.g., common JavaScript libraries, we set long-lived
cache headers for them. For other resources, e.g., dynamic
JavaScript files, we set no-cache headers for them, and add
random strings in the URLs in case that browsers do not support
cache headers. We append our guarding scripts into every page
with a random string in the URL, which will not be cached in
the client-side browser and follows CSP directives of the
page.

(1) For the resources with random strings in the URLs, we
directly add them as external scripts in the page. For the
infrequently changed JavaScript files, our guarding scripts
first send XMLHttpRequest to fetch them from either the
server or the browser cache. Then the guarding scripts
check the caching status of these scripts. We set the start
time in the onloadstart event handler, and set the end time
in the onreadystatechange event handler. We measure two
rounds of the request load time of each subresource. If
the time difference is larger than the threshold, e.g., 100
ms, it indicates a cache miss for the subresource. If the
request load time is approximately the same for two
rounds, the subresource is considered to be cached in
the user’s browser.

Below is the piece of code to measure the load time of
XMLHttpRequest.

(2) Based on the caching status of each JavaScript
subresource, we have different ways to handle it. The
client-side scripts fetch the file C containing the latest
SHA256 values for infrequently changed subresources
from the server via a URL containing a random string,
which is used to check the integrity of subresources.
Below is the piece of code to handle different cache and
integrity status for one subresource.

(3) By default the client-side scripts in A can only issue
XMLHttpRequest to fetch A’s resources, not the resources
from other domains. Although the “Access-Control-
Allow-Origin” header loosens the restriction to allow other
domains to access the resource, few resources set the
header as “*” (allow all sites to access the resources) or
explicitly specify a.com as a privileged domain.

To overcome this challenge, by setting a reverse proxy at the
server side, we enable the web server to provide cross-origin
resources with URLs under a.com. Take Apache as an example,
we enable the proxy module and set “ProxyPass/service/https://
www.google-analytics.com/” in the configuration file.11 As the
result of this setting, the URL https://www.google-analytics.com/
analytics.js is transparently hosted on a.com. We configure the
reverse proxy and convert the URLs of all cross-origin resources
in A, e.g., third-party analytics scripts, common libraries, and
advertisement resources, to the URLs under a.com. Thus the
client-side scripts in A can fetch cross-origin resources under
a.com with XMLHttpRequest.To avoid introducing security loop-
holes, the reverse proxy only processes such resource requests
that (1) come from A, and (2) fetch a selected set of URLs main-
tained by A’s developers.

As we describe above, in the target site A, all JavaScript
subresources can be classified into four categories: never
cached resources with URLs containing a random string, not
cached resources with normal URLs, cached resources
passing the integrity check with normal URLs, and cached but
poisoned resources with random URLs. Since the subre-
sources with random URLs cannot be predicted by the
browser cache poisoning attacker, and the ones with normal
URLs are not poisoned, this approach mitigates cross-origin
BCP attacks.

11 After the setting, in any page of A, <script src=“/service/
analytics.js”></script> equals <script src=“https://www.google
-analytics.com/analytics.js”></script>.

75c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

https://www.google-analytics.com/analytics.js
https://www.google-analytics.com/analytics.js
https://www.google-analytics.com/analytics.js
https://www.google-analytics.com/analytics.js

Performance evaluation. To understand the performance impact
of our proposed technique, we applied it to 10 popular web ap-
plications within two days. Since attackers usually compromise
login pages to steal users’ credentials, we use the login page
of each web application to measure the performance over-
head. We fetch the login page of these 10 websites and host
them on our server. We retrofit these websites to adopt our so-
lution, measure the page load time of the original page and
the modified one (averaged on 10 runs).

Table 5 summarizes the results of page load time for the
original login page and that for the modified one. We can see
our solution introduces the minor performance overhead
(<5%) to these websites. Different from randomizing all re-
sources’ URLs, we only randomize the poisoned resource URLs
and the browser can still load unpoisoned resources from the
cache.Thus our approach causes minor performance overhead.

7. Conclusion

In this paper, we perform a systematic study of browser
cache poisoning attacks against HTTPS connections, which

persistently compromise the victim’s web sessions with the
target site by poisoning the victim’s browser cache. Through
experiments on five mainstream desktop browsers and 16
popular mobile browsers, we find the inconsistency of SSL
warnings and incoherence of browser caching policies.
In particular, the majority of mobile browsers do not deploy
SSL warnings properly, and always cache resources over broken
HTTPS. In our evaluation, we demonstrate that all 21 popular
browsers are susceptible to BCP attacks. We also find that 26
Android browser-like applications do not display SSL warning
and are vulnerable to BCP attacks. Meanwhile, only five
sites of Alexa Top 100 and 1.63% of 31,377 HTTPS websites
have partial protections. Furthermore, we discuss pros and
cons of potential defenses, and provide guidelines for
users and browser vendors to defeat BCP attacks. We also
propose defense techniques for web developers to mitigate
the impact of these attacks on the existing deployment of
browsers.

Acknowledgments

This work was supported in part by the National Natural Science
Foundation of China (No. 61402029), the National Key Basic Re-
search Program (NKBRP) (973 Program) (No. 2012CB315905), the
National Natural Science Foundation of China (No. 61730190),
the Beijing Natural Science Foundation (No. 4132056), Minis-
try of Education – Singapore under NUS grant R-252-000-539-
112, and the research grant for the Human-Centered Cyber-
physical Systems Programme at the Advanced Digital Sciences
Center from Singapore’s Agency for Science, Technology and
Research (A*STAR).

Appendix

Table 5 – : Page load time for the original login page and
the modified one (in milliseconds) with browser cache.

Website Time
(original)

Time
(modified)

Overhead

google.com 779.0 810.5 4.04%
facebook.com 467.0 487.8 4.45%
youtube.com 2134.0 2235.8 4.77%
yahoo.com 1523.0 1587.0 4.20%
twitter.com 331.0 346.9 4.80%
linkedin.com 1340.0 1387.0 3.51%
dropbox.com 1225.0 1265.9 3.34%
paypal.com 548.5 574.1 4.67%
github.com 723.6 752.7 4.02%
wordpress.com 1652.0 1712.5 3.66%

76 c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

(a) Address bar warnings in Chrome. (b) Address bar warnings in Firefox. (c) Address bar warnings in Safari.

(d) Address bar warnings in Opera.
(e) Address bar warnings in IE. (f) Address bar warnings in Firefox for

Android.

(g) Address bar warnings in Chrome for
Android.

(h) Address bar warnings in Opera for An-
droid. (i) Address bar warnings in Safari for iOS.

(j) Address bar warnings in Android De-
fault Browser. (k) Address bar warnings in UC Browser. (l) Address bar warnings in Dolphin.

(m) Address bar warnings in Boat.
(n) Address bar warnings in Baidu
Browser.

(o) Address bar warnings in Maxthon
Browser.

(p) Address bar warnings in Next Browser. (q) Address bar warnings in CM Browser.
(r) Address bar warnings in Web Explorer
Browser.

(s) Address bar warnings in Web Browser. (t) Address bar warnings in Javelin
Browser.

(u) Address bar warnings in IE for Win-
dows Phone.

Fig. A1 – Warnings in the address bar on mainstream browsers. a–m show warnings for hijacked sites in the address bar:
the upper one is the warning for sites over broken HTTPS and the lower one is for sites over secure HTTPS. Other browsers
do not show any differences in the address bar for sites with invalid certificates, as shown in n–u.

77c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

(a) SSL warnings in Firefox.
(b) SSL warnings in Chrome. (c) SSL warnings in Safari.

(d) SSL warnings in Opera.
(e) SSL warnings in IE. (f) SSL warnings in Firefox for Android.

(g) SSL warnings in Chrome for Android. (h) SSL warnings in Safari for iOS.

(i) SSL warnings in Opera for Android.

(j) SSL warnings in IE for Windows
Phone.

(k) SSL warnings in Android Default
Browser. (l) SSL warnings in Baidu Browser.

(m) SSL warnings in Maxthon Browser. (n) SSL warnings in Next Browser. (o) SSL warnings in Dolphin Browser.

(p) SSL warnings in Boat Browser.
(q) SSL warnings in Web Explorer
Browser.

(r) SSL warnings in Web Browser.

(s) SSL warnings in Javelin Browser. (t) SSL warnings in UC Browser.

Fig. A2 – SSL warnings in mainstream browsers. As a–p show, SSL warnings in these browsers contain more details of the
warning, e.g., certificate. Other browsers display incomplete information in the warning as shown in q–t.

78 c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

R E F E R E N C E S

A. Research. Nokia: 50 million Windows phone sales possible
for 2014 (NOK), <http://seekingalpha.com/article/2128173
-nokia-50-million-windows-phone-sales-possible-for-2014>;
2014.

A. Technica. Windows 8.x, Internet Explorer both flatline in june,
<http://arstechnica.com/information-technology/2014/07/
windows-8-x-internet-explorer-both-flatline-in-june/>; 2015.

Aggarwal G, Bursztein E, Jackson C, Boneh D. An analysis of
private browsing modes in modern browsers. In: USENIX
security symposium. 2010.

Akhawe D, Felt AP. Alice in warningland: a large-scale field study
of browser security warning effectiveness. In: USENIX
security symposium, 2013. p. 257–72.

Balfanz D, Hamilton R. Transport layer security (TLS) Channel
IDs, <https://tools.ietf.org/html/draft-balfanz-tls-channelid
-00>; 2013.

Bhargavan K, Delignat-Lavaud A, Fournet C, Pironti A, Strub P-Y.
Triple handshakes and cookie cutters: breaking and fixing
authentication over TLS. In: 2014 IEEE symposium on security
and privacy (SP). 2014. p. 98–113.

Bortz A, Boneh D. Exposing private information by timing web
applications. In: Proceedings of the 16th international
conference on world wide web. 2007. p. 621–8.

Boyko V, MacKenzie P, Patel S. Provably secure
password-authenticated key exchange using Diffie-Hellman.
In: Advances in cryptology eurocrypt. 2000. p. 156–71.

Braun F, Akhawe D, Weinberger J, West M. Subresource integrity.
In: W3C working draft. 2014.

Bursztein E, Gourdin B, Rydstedt G, Boneh D. Bad memories.
BlackHat; 2010.

Callegati F, Cerroni W, Ramilli M. Man-in-the-middle attack to
the HTTPS protocol. IEEE Secur Priv 2009;7(1):78–81.

Checkoway S, Fredrikson M, Niederhagen R, Green M, Lange T,
Ristenpart T, et al., On the practical exploitability of dual EC
in TLS implementations. In: USENIX security symposium.
2014. p. 319–35.

Chen S, Mao Z, Wang Y-M, Zhang M. Pretty-bad-proxy: an over-
looked adversary in browsers’ HTTPS deployments. In:2009
IEEE symposium on security and privacy. 2009. p. 347–59.

Chromium. Do not cache resources retrieved via broken HTTPS
in AppCache or service worker, <https://code.google.com/p/
chromium/issues/detail?id=414026>; 2010.

Comodo. Comodo report fraudulently issued certificates, <http://
www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html>;
2011.

Dacosta I, Ahamad M, Traynor P. Trust no one else: detecting
MITM attacks against SSL/TLS without third-parties. In:
Proceedings of the 17th European symposium on research in
computer security, Springer; 2012. p. 199–216.

Dahl D, Sleevi R. Web cryptography API. In: W3C working draft.
2013.

Dhamija R, Tygar JD, Hearst M. Why phishing works. In:
Proceedings of the 24th ACM conference on human factors in
computing systems. 2006. p. 581–90.

Dietz M, Czeskis A, Balfanz D, Wallach DS. Origin-bound
certificates: a fresh approach to strong client authentication
for the web. In: USENIX security symposium. 2012. p. 317–31.

Evans C, Palmer C. Public key pinning extension for HTTP,
<http://tools.ietf.org/html/draft-ietf-websec-key-pinning-19>;
2011.

Fahl S, Harbach M, Muders T, Baumgärtner L, Freisleben B, Smith
M. Why eve and mallory love android: an analysis of android
SSL (in) security. In: Proceedings of the 2012 ACM conference
on computer and communications security. 2012. p. 50–61.

Fahl S, Harbach M, Perl H, Koetter M, Smith M. Rethinking SSL
development in an appified world. In: Proceedings of the 20th
ACM conference on computer and communications security.
2013. p. 49–60.

Felt AP, Reeder RW, Almuhimedi H, Consolvo S. Experimenting at
scale with google chrome’s SSL warning. In: Proceedings of
the 32nd ACM conference on human factors in computing
systems. 2014. p. 2667–70.

Felten EW, Schneider MA. Timing attacks on web privacy. In:
Proceedings of the 7th ACM conference on computer and
communications security. 2000. p. 25–32.

Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, et al.,
Hypertext transfer protocol–HTTP/1.1, <http://tools.ietf.org/
html/rfc2616>; 1999.

G. C. Team. Security fixes and rewards, <http://
googlechromereleases. blogspot.com/2015/01/stable
-update.html>; 2015.

G. Developers. Leverage browser caching, <https://developers
.google.com/speed/docs/best-practices/caching>; 2015.

G. Project. HTTP strict transport security, <https://www
.chromium.org/hsts>; 2015.

Hallam-Baker P, Stradling R. DNS certification authority
authorization (CAA) resource record, <http://tools.ietf
.org/html/rfc6844>; 2013.

Herzberg A. Why johnny can’t surf (safely)? attacks and defenses
for web users. Comput Secur 2009;28(1):63–71.

Hodges J, Jackson C, Barth A. HTTP strict transport security
(HSTS), <http://tools.ietf.org/html/draft-ietf-websec-strict
-transport-sec-04>; 2012.

Hoffman P, Schlyter J. The DNS-based authentication of named
entities (DANE) transport layer security (TLS) protocol: TLSA,
Tech. rep., RFC 6698, August 2012.

Huang L, Moshchuk A, Wang HJ, Schecter S, Jackson C.
Clickjacking: attacks and defenses. In: USENIX security
symposium. 2012. p. 413–28.

Huang L-S, Chen EY, Barth A, Rescorla E, Jackson C. Talking to
yourself for fun and profit. In: Web 2.0 security and privacy.
2011.

Huang L-S, Rice A, Ellingsen E, Jackson C. Analyzing forged SSL
certificates in the wild. In: 2014 IEEE symposium on security
and privacy (SP). 2014. p. 83–97.

I. VASCO. Diginotar reports security incident, <https://www.vasco
.com/company/about_vasco/press_room/news_archive/2011/
news_diginotar_reports_security_incident.aspx>; 2011.

Ingraham N. Apple has sold more than 800 million iOS devices,
130 million new iOS users in the last year, <http://www
.theverge.com/2014/6/2/5772344/apple-wwdc-2014-stats
-update>; 2014.

Jackson C, Barth A. Forcehttps: protecting high-security
web sites from network attacks. In: Proceedings of the
17th international conference on world wide web. 2008. p.
525–34.

Jackson C, Bortz A, Boneh D, Mitchell JC. Protecting browser state
from web privacy attacks. In: Proceedings of the 15th
international conference on world wide web. 2006, p. 737–44.

Jakobsson M, Stamm S. Invasive browser sniffing and
countermeasures. In: Proceedings of the 15th international
conference on world wide web. 2006. p. 523–32.

Jia Y, Dong X, Liang Z, Saxena P. I know where you’ve been:
geoinference attacks via the browser cache. In: Web 2.0
security and privacy. 2014.

Jin X, Hu X, Ying K, Du W, Yin H, Peri GN. Code injection attacks
on html5-based mobile apps: characterization, detection
and mitigation. In: Proceedings of the 21st ACM conference
on computer and communications security. 2014, p. 66–77.

Johns M, Lekies S, Stock B. Eradicating DNS rebinding with the
extended same-origin policy. In: USENIX security symposium.
2013. p. 621–36.

79c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0010
http://seekingalpha.com/article/2128173-nokia-50-million-windows-phone-sales-possible-for-2014
http://seekingalpha.com/article/2128173-nokia-50-million-windows-phone-sales-possible-for-2014
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0015
http://arstechnica.com/information-technology/2014/07/windows-8-x-internet-explorer-both-flatline-in-june/
http://arstechnica.com/information-technology/2014/07/windows-8-x-internet-explorer-both-flatline-in-june/
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0020
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0020
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0020
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0025
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0025
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0025
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0030
https://tools.ietf.org/html/draft-balfanz-tls-channelid-00
https://tools.ietf.org/html/draft-balfanz-tls-channelid-00
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0035
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0035
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0035
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0035
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0040
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0040
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0040
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0045
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0045
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0045
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0050
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0050
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0055
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0055
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0060
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0060
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0065
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0065
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0065
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0065
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0070
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0070
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0070
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0075
https://code.google.com/p/chromium/issues/detail?id=414026
https://code.google.com/p/chromium/issues/detail?id=414026
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0085
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0085
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0085
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0085
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0090
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0090
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0095
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0095
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0095
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0100
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0100
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0100
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0105
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-19
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0110
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0110
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0110
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0110
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0115
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0115
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0115
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0115
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0120
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0120
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0120
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0120
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0125
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0125
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0125
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0130
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://googlechromereleases
http://googlechromereleases
http://blogspot.com/2015/01/stable-update.html
http://blogspot.com/2015/01/stable-update.html
https://developers.google.com/speed/docs/best-practices/caching
https://developers.google.com/speed/docs/best-practices/caching
https://www.chromium.org/hsts
https://www.chromium.org/hsts
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0150
http://tools.ietf.org/html/rfc6844
http://tools.ietf.org/html/rfc6844
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0155
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0155
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0160
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-04
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-04
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0165
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0165
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0165
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0170
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0170
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0170
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0175
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0175
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0175
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0180
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0180
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0180
https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0190
http://www.theverge.com/2014/6/2/5772344/apple-wwdc-2014-stats-update
http://www.theverge.com/2014/6/2/5772344/apple-wwdc-2014-stats-update
http://www.theverge.com/2014/6/2/5772344/apple-wwdc-2014-stats-update
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0195
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0195
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0195
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0195
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0200
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0200
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0200
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0205
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0205
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0205
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0210
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0210
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0210
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0215
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0215
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0215
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0215
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0220
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0220
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0220

Karapanos N, Capkun S. On the effective prevention of TLS
man-in-the-middle attacks in web applications. In: USENIX
security symposium. 2014. p. 671–86.

Keeler D. Preloading HSTS, <https://blog.mozilla.org/security/
2012/11/01/preloading-hsts/>; 2012.

Klein A. Web cache poisoning attacks. In: Encyclopedia of
cryptography and security. Springer; 2011. p. 1373.

Kuppan L. Attacking with HTML5. BlackHat; 2010.
Lekies S, Johns M. Lightweight integrity protection for web

storage-driven content caching. In: Web 2.0 security and
privacy. 2012.

M. dev team. Mitmproxy: a man-in-the-middle proxy, <http://
mitmproxy.org/>; 2014.

MacKenzie P. The pak suite: protocols for password-
authenticated key exchange. Contributions to IEEE P 1363
2002;2.

Marchesini J, Smith SW, Zhao M. Keyjacking: the surprising
insecurity of client-side SSL. Comput Secur 2005;24(2):109–23.

Marlinspike M. New tricks for defeating SSL in practice. BlackHat;
2009.

Mozilla. Using the application cache, <https://developer.mozilla
.org/en-US/docs/Web/HTML/Using_the_application_cache>;
2015.

N. I. of Standards. Technology, Special publication 800-90:
recommendation for random number generation using
deterministic random bit generators, <http://csrc.nist.gov/
publications/PubsSPs.html#800-90A>; 2015.

N. Y. Post. Google: 1 billion people using Android devices, <http://
nypost.com/2014/06/26/google-shows-off-android-auto
-smartwatches/>; 2014.

Niemietz M, Schwenk J. UI redressing attacks on android devices,
<https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-
androidmarcus_niemietz-WP.pdf>; 2012.

OpenSSL. OpenSSL project, <https://www.openssl.org/>; 2015.
Prandini M, Ramilli M, Cerroni W, Callegati F. Splitting the HTTPS

stream to attack secure web connections. IEEE Secur Priv
2010;8(6):80–4.

Saltzman R, Sharabani A. Active man in the middle attacks. In:
OWASP AU, 2009.

Sterne B, Barth A. Content security policy 1.0, W3C Candidate
Recommendation CR-CSP-20121115 2012.

Sunshine J, Egelman S, Almuhimedi H, Atri N, Cranor LF. Crying
wolf: an empirical study of SSL warning effectiveness. In:
USENIX security symposium. 2009. p. 399–416.

Vallentin M, Ben-David Y. Persistent browser cache poisoning,
<http://www.eecs.berkeley.edu/~yahel/papers/Browser
-Cache-Poisoning.Song.Spring10.attack-project.pdf>;
2010.

Vallentin M, Ben-David Y. Quantifying persistent browser cache
poisoning, <http://matthias.vallentin.net/course-work/
cs294-50-s10.pdf>; 2014.

W3C. Content security policy, <https://w3c.github.io/webappsec/
specs/content-security-policy/>; 2015a.

W3C. Content security policy level 2, <http://www.w3.org/TR/
CSP2/>; 2015b.

Wondracek G, Holz T, Kirda E, Kruegel C. A practical attack to
deanonymize social network users. In: 2010 IEEE symposium
on security and privacy (SP). 2010. p. 223–38.

Yaoqi Jia is a Ph.D. student in National University of Singapore. His
research interests are web security and mobile security.

Yue Chen is a Master student in Beihang University, China. His re-
search interests are in web security.

Xinshu Dong is a researcher in ADSC, Singapore. His research in-
terests are in web security, and cyber–physical system security.

Prateek Saxena is an assistant professor in National University of
Singapore. His research interests include system security, web se-
curity, mobile security, and applied cryptography. He received his
Ph.D. degree from University of California, Berkeley.

Jian Mao is an assistant professor in Beihang University, China. Her
interests include applied cryptography and cloud security, web se-
curity, and mobile security. She received her Ph.D. degree from Xidian
University, China.

Zhenkai Liang is an associate professor in National University of
Singapore. His research interests include system security, web se-
curity, and mobile security. He received his Ph.D. degree from Stony
Brook University.

80 c om pu t e r s & s e cu r i t y 5 5 (2 0 1 5) 6 2 – 8 0

http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0225
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0225
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0225
https://blog.mozilla.org/security/2012/11/01/preloading-hsts/
https://blog.mozilla.org/security/2012/11/01/preloading-hsts/
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0235
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0235
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0240
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0245
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0245
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0245
http://mitmproxy.org/
http://mitmproxy.org/
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0255
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0255
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0255
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0260
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0260
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0265
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0265
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0275
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0275
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://nypost.com/2014/06/26/google-shows-off-android-auto-smartwatches/
http://nypost.com/2014/06/26/google-shows-off-android-auto-smartwatches/
http://nypost.com/2014/06/26/google-shows-off-android-auto-smartwatches/
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0285
https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf
https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf
https://www.openssl.org/
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0295
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0295
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0295
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0300
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0300
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0305
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0305
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0310
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0310
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0310
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0315
http://www.eecs.berkeley.edu/~yahel/papers/Browser-Cache-Poisoning.Song.Spring10.attack-project.pdf
http://www.eecs.berkeley.edu/~yahel/papers/Browser-Cache-Poisoning.Song.Spring10.attack-project.pdf
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0320
http://matthias.vallentin.net/course-work/cs294-50-s10.pdf
http://matthias.vallentin.net/course-work/cs294-50-s10.pdf
https://w3c.github.io/webappsec/specs/content-security-policy/
https://w3c.github.io/webappsec/specs/content-security-policy/
http://www.w3.org/TR/CSP2/
http://www.w3.org/TR/CSP2/
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0335
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0335
http://refhub.elsevier.com/S0167-4048(15)00112-1/sr0335

	 Man-in-the-browser-cache: Persisting HTTPS attacks via browser cache poisoning
	 Introduction
	 Background and related work
	 Background: browser cache
	 Related work
	 Problem overview
	 Threat model
	 Problem: browser cache poisoning
	 Browser measurement
	 Experimentation overview
	 The inconsistency of SSL warnings
	 Incoherence of browser caching policies
	 Susceptibility of browsers
	 Insufficiency of existing solutions
	 Defenses against MITM attacks
	 Content restriction and document integrity
	 Defenses via browser cache
	 Our defense techniques
	 Guidelines for users
	 Guidelines for browser vendors
	 Defense techniques for website developers
	 Conclusion
	 Acknowledgments
	 Appendix
	 References

